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In  this  paper  a new  multiobjective  (MO)  clustering  technique  (GenClustMOO)  is proposed  which  can
automatically  partition  the  data  into  an  appropriate  number  of  clusters.  Each  cluster  is divided  into
several  small  hyperspherical  subclusters  and  the  centers  of all these  small  sub-clusters  are  encoded  in
a string  to represent  the whole  clustering.  For  assigning  points  to  different  clusters,  these  local  sub-
clusters  are  considered  individually.  For  the  purpose  of  objective  function  evaluation,  these  sub-clusters
are merged  appropriately  to form  a variable  number  of  global  clusters.  Three  objective  functions,  one
reflecting  the  total  compactness  of the  partitioning  based  on  the  Euclidean  distance,  the other  reflect-
ing  the  total  symmetry  of  the  clusters,  and  the  last  reflecting  the  cluster  connectedness,  are  considered
here.  These  are  optimized  simultaneously  using  AMOSA,  a  newly  developed  simulated  annealing  based
multiobjective  optimization  method,  in order  to  detect  the  appropriate  number  of  clusters  as  well  as  the
appropriate  partitioning.  The  symmetry  present  in  a partitioning  is  measured  using a  newly  developed
point  symmetry  based  distance.  Connectedness  present  in  a partitioning  is measured  using  the  relative
neighborhood  graph  concept.  Since  AMOSA,  as  well  as any  other  MO  optimization  technique,  provides
a  set  of Pareto-optimal  solutions,  a new  method  is also  developed  to determine  a single  solution  from
this  set.  Thus  the  proposed  GenClustMOO  is able  to  detect  the  appropriate  number  of  clusters  and  the
appropriate  partitioning  from  data  sets  having  either  well-separated  clusters  of  any  shape  or  symmetrical

clusters  with  or without  overlaps.  The  effectiveness  of  the  proposed  GenClustMOO  in  comparison  with
another  recent  multiobjective  clustering  technique  (MOCK),  a single  objective  genetic  algorithm  based
automatic  clustering  technique  (VGAPS-clustering),  K-means  and  single  linkage  clustering  techniques  is
comprehensively  demonstrated  for nineteen  artificial  and  seven  real-life  data  sets  of  varying  complexi-
ties.  In  a part  of  the experiment  the  effectiveness  of AMOSA  as  the  underlying  optimization  technique  in
GenClustMOO  is  also  demonstrated  in  comparison  to  another  evolutionary  MO  algorithm,  PESA2.
. Introduction

Clustering [1,2] is a popular unsupervised pattern classification
echnique which partitions the input space into K regions based on

ome similarity/dissimilarity metric where the value of K may  or
ay  not be known a priori. The aim of any clustering technique is

o evolve a partition matrix U(X) of the given data set X (consisting
f, say, n patterns, X = {x1, x2, . . .,  xn}) such that
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n∑
j=1

ukj ≥ 1 for k = 1, . . . , K,

K∑
k=1

ukj = 1 for j = 1, . . . , n, and

K∑
k=1

n∑
j=1

ukj = n.

The partition matrix U(X) of size K × n may  be represented as
U = [ukj], k = 1, . . .,  K and j = 1, . . .,  n, where ukj is the membership
of pattern xj to cluster Ck. In crisp partitioning ukj = 1 if xj ∈ Ck, oth-

erwise ukj = 0. Elements of U are real numbers in the interval (0,
1).

Determining the appropriate number of clusters from a given
data set is an important consideration in clustering. For this
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urpose, and also to validate the obtained partitioning, several
luster validity indices have been proposed in the literature. The
easure of validity of the clusters should be such that it will

e able to impose an ordering of the clusters in terms of their
oodness. The classical approach of determining the number of
lusters is to apply a given clustering algorithm for a range of K
alues and to evaluate a certain validity function of the resulting
artitioning in each case. The partitioning exhibiting the optimal
alidity is chosen as the true partitioning. In [3] a genetic cluster-
ng technique is proposed which uses a cluster validity index as the
bjective function. Authors have experimented with several dif-
erent cluster validity indices. In [4] authors have experimented
ith three clustering algorithms, hard K-Means, single linkage,

nd a simulated annealing (SA) based technique, in conjunction
ith four cluster validity indices, namely Davies–Bouldin index,
unn’s index, Calinski–Harabasz index, and a recently developed

ndex I. In [5] a new cluster validity index named CS-index is
eveloped which is able to detect clusters of different densities.

n addition, authors also propose a modified K-means algorithm
hat can assign more cluster centers to areas with low densities of
ata than the conventional K-means algorithm does. Some fuzzy

ogic based cluster validity indices are proposed in [6].  A parti-
ional clustering method based on graph theory and a clustering
endency index are proposed in [7]. The number of clusters and
he partition that best fits the data set, are selected according to
he optimal cluster tendency index value. In [8],  authors have pre-
ented an analysis of design principles implicitly used in defining
luster validity indices and reviewed a variety of existing cluster
alidity indices in the light of these principles. After that authors
roposed some remedies to overcome the limitations of the exist-

ng indices. Based on these remedies six new cluster validity indices
re proposed.

The method of using cluster validity indices for search-
ng the optimal number of cluster number depends on the
elected clustering algorithm, whose performance may  depend
n several factors including the initial values, algorithm’s param-
ters, optimization approach and assumptions regarding the
luster distributions. Similarly, most of the validity measures
sually assume a certain geometrical structure in the clus-
er shapes. But if several different cluster structures exist
n the same data set, these have often been found to
ail.

The global optimum of these validity functions correspond
o the most “valid” solutions. Thus Genetic Algorithms (GAs)
ave been applied to optimize the validity functions to deter-
ine the appropriate number of clusters and the appropriate

artitioning of a data set simultaneously [3,9,10]. Simple GA
SGA) [11] or its variants are used as the genetic clustering
echniques in [3,9,10]. In [12], a function called Weighted Sum
alidity Function (WSVF), which is a weighted sum of the sev-
ral normalized validity functions, is used for optimization along
ith a Hybrid Niching Genetic Algorithm (HNGA) to automat-

cally evolve the proper number of clusters from a given data
et. Within this HNGA, a niching method is developed to pre-
ent premature convergence by preserving both the diversity of
he population with respect to the number of clusters encoded
n the individuals and the diversity of the subpopulation with
he same number of clusters during the search. In [13], a vari-
ble string length GA (VGA) based clustering method (named
GAPS-clustering) is proposed which uses a newly developed
oint symmetry based distance [14] for assignment of points
o different clusters and optimizes a newly developed point

ymmetry (PS) based cluster validity index, Sym-index [15,13]. Use
f the PS-distance enables the proposed VGAPS-clustering to evolve
he clusters of any shape and size as long as they possess the sym-

etry property.
ft Computing 13 (2013) 89–108

1.1. Relevance of multiobjective optimization for clustering

Clustering is considered to be a difficult task as no unambiguous
partitioning of the data exists for many data sets. Most of the exist-
ing clustering techniques are based on only one criterion which
reflects a single measure of goodness of a partitioning. However,
a single cluster quality measure is seldom equally applicable for
different kinds of data sets with different characteristics. Hence, it
may  become necessary to simultaneously optimize several cluster
quality measures that can capture the different data characteris-
tics. In order to achieve this the problem of clustering a data set
has been posed as one of multiobjective optimization in litera-
ture. In [16], a multiobjective clustering technique called MOCK is
developed which outperforms several single-objective clustering
algorithms, a modern ensemble technique, and two other methods
of model selection. Although the objectives of [16] are very useful,
it can only handle clusters either having hyperspherical shape or
“connected” but well-separated structures. It fails for datasets hav-
ing overlapping clusters which do not contain any hyperspherical
shape. Moreover MOCK uses locus-based adjacency representa-
tion proposed in [17]. Thus when the number of data points is too
large the string length becomes high too and convergence becomes
slow.

In this paper we have developed a new multiobjective clustering
technique with encoding of cluster centers instead of data points.
The technique can detect the appropriate number of clusters and
the appropriate partitioning from data sets with many different
types of cluster structures. A newly developed simulated anneal-
ing based multiobjective optimization technique, AMOSA, is used
as the underlying optimization strategy. The concept of “multiple
centers” corresponding to each cluster is used in this article. Each
cluster is divided into several non-overlapping small hyperspheri-
cal sub-clusters and the centers of these sub-clusters are encoded
in a string to represent a particular cluster. Three cluster validity
indices are optimized simultaneously using the search capability
of AMOSA. One of these cluster validity indices reflects the total
compactness of a particular partitioning, another represents the
total symmetry present in a particular partitioning and the last
one measures, in a novel way, the degree of “connectedness” of
a particular partitioning.

Any multiobjective optimization technique generates a large
number of non-dominated solutions on its final Pareto optimal
front. Each of these solutions provides a way  of partitioning the
particular data set. All these solutions are equally important from
the algorithmic point of view, but sometimes the user wants a sin-
gle solution. Thus in this article we  have also developed a new
semi-supervised method to identify a single best solution from the
set of final Pareto-optimal solutions. The superiority of the pro-
posed GenClustMOO in comparison with MOCK, a recently proposed
MO clustering technique, a single objective genetic clustering tech-
nique VGAPS-clustering [13], K-means clustering technique and
single linkage clustering techniques, is shown for nineteen artificial
data sets (including most of the data sets used in [16]) and seven
real-life data sets of varying complexities. In a part of the experi-
ment, the effectiveness of AMOSA as the underlying optimization
technique in GenClustMOO is also demonstrated in comparison to
another evolutionary MO  algorithm, PESA2. In a part of the paper
we have also experimented with a second criterion of selecting a
single solution from the final Pareto optimal set.

2. The SA based MOO  algorithm: AMOSA
Archived multiobjective simulated annealing (AMOSA) [18] is
an efficient MO version of the simulated annealing (SA) algorithm.
MOO  is applied when dealing with the real-world problems where
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here are several objectives that should be optimized simulta-
eously. Simulated annealing (SA) is a search technique for solving
ifficult optimization problems, which is based on the principles
f statistical mechanics [19]. SA can not only replace exhaustive
earch to save time and resource, but also converge to the global
ptimum if annealed sufficiently slowly [20]. Although the single
bjective version of SA has been quite popular, its utility in the
ultiobjective case was limited because of its search-from-a-point

ature. Recently Bandyopadhyay et al. developed an efficient mul-
iobjective version of SA called AMOSA [18] that overcomes this
imitation.

In AMOSA (archived multiobjective simulated annealing) [18],
hich is an multiobjective version of SA, several concepts have

een newly integrated. It utilizes the concept of an archive where
he non-dominated solutions seen so far are stored. Two lim-
ts are kept on the size of the archive: a hard or strict limit
enoted by HL,  and a larger, soft limit denoted by SL,  where SL > HL.
he non-dominated solutions are stored in the archive as and
hen they are generated. In the process, if some members of

he archive get dominated by the new solutions, then these are
emoved. If at some point of time, the size of the archive exceeds

 specified value, then the clustering process, described below, is
nvoked.

In AMOSA, the initial temperature is set to Tmax. Then, one of
he points is randomly selected from the archive. This is taken as
he current-pt,  or the initial solution. The current-pt is perturbed to
enerate a new solution called new-pt,  and its objective functions
re computed. The domination status of the new-pt is checked with
espect to the current-pt and the solutions in the archive. A new
uantity called the amount of domination, �dom(a, b), between
wo solutions a and b is defined as follows:

doma,b =
M∏

i=1,fi(a) /=  fi(b)

|fi(a) − fi(b)|
Ri

, (1)

here fi(a) and fi(b) are the ith objective values of the two solu-
ions and Ri is the corresponding range of the objective function
omputed from the individuals in the population. M is the number
f objectives. Based on the domination status between the new-pt,
urrent-pt and the points in the archive, different cases may  arise.
hese are discussed in details in [18], and are briefly mentioned
ere for the sake of completeness.

ase 1: new-pt is either dominated by the current-pt or it is
nondominating with respect to the current-pt,  but some
points in the archive dominate the new-pt. Suppose new-pt
is dominated by a total of k points (including current-pt
and points in the archive). This case is demonstrated in
Fig. 1 (the points D–H in the figure signify the content
of the archive at any instant, while the other points
illustrate different cases that may  arise with respect to the
archive) where F represents the current-pt and B repre-
sents the new-pt. Then a quantity �domavg is computed as

(
∑k

i=1(�domi,new−pt) + �domcurrent−pt,new−pt)/(k + 1).
The new-pt is accepted as current-pt with a
probability

pqs = 1

1 + e((�domavg )/T)
. (2)

Note that �domavg denotes the average amount of domi-
nation of the new-pt by (k + 1) points, namely, the current-pt

and k points of the archive. Also, as k increases, �domavg

will increase since here the dominating points that are
farther away from the new-pt are contributing to its
value.
Fig. 1. Pareto-optimal front and different domination examples.

Case 2: Neither the current-pt nor the points in the archive domi-
nate the new-pt.  This can be demonstrated with different
examples shown in Fig. 1, e.g., F represents the current-
pt and E represents the new-pt, G represents the current-pt
and I represents the new-pt, F represents the current-pt and
I represents the new-pt. For all these cases, accept the new-
pt as the current-pt.  If there are any points in the archive
which are dominated by new-pt,  remove them from the
archive. Add new-pt in the archive. If archive size crosses
the SL,  apply single linkage clustering to reduce its size to
HL.

Case 3: new-pt dominates the current-pt but k points in the archive
dominate the new-pt. This case can be demonstrated
using Fig. 1 where A represents the current-pt and B
represents the new-pt. Here the minimum of the differ-
ences of domination amounts between the new-pt and
the k points, denoted by �dommin of the archive is com-
puted. The point from the archive that corresponds to
the minimum difference is selected as the current-pt with
probability

probability = 1
1 + exp(�dommin)

. (3)

Otherwise the new-pt is selected as the current-
pt.  This may  be considered as an informed reseed-
ing of the annealer only if the archive point is
accepted.

The above process is repeated iter times for each temperature
(temp). Temperature is reduced to  ̨ × temp, using the cooling rate
of  ̨ till the minimum temperature, Tmin, is attained. The process
thereafter stops, and the archive contains the final non-dominated
solutions.

It has been demonstrated in [18] that the performance of AMOSA
is better than that of NSGA-II [21] and some other well-known MOO
algorithms. The pseudocode of the AMOSA algorithm is shown in
Fig. 2.

Since the performance of AMOSA has been found to be as good
as, or often better than, some other well-known MOO  algorithms
especially for 3 or more objectives [18], it is used as the underlying
MOO  technique in this article.
3. Proposed method of multiobjective clustering

This section describes the newly proposed multiobjective clus-
tering technique, GenClustMOO,  in detail.
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ource code is available at: www.isical.ac.in/ sriparna r.

.1. String representation and population initialization

In GenClustMOO,  a state of AMOSA comprises a set of real num-
ers which represents the coordinates of the centers of the clusters.
MOSA attempts to evolve an appropriate set of cluster centers
nd hence the associated partitioning of the data. Here, each clus-
er is divided into several small non-overlapping hyperspherical
ub-clusters. Then each cluster is represented by the centers of
hese individual sub-clusters. Suppose a particular string encodes
he centers of K number of clusters and each cluster is divided into

 number of sub-clusters. If the data set is of dimension d, then the
ength of the string will be C × K × d. This concept of representing

ne cluster using multi-centers is shown in Fig. 3. Suppose a partic-
lar string contains K = 2 number of clusters. Each cluster is divided

nto 10 smaller sub-clusters, i.e., here C = 10. Let the dimension (d)
f the data set be 2. Suppose the center of the jth sub-cluster of the
lgorithm [18].

ith cluster is denoted by ci
j = (cxi

j
, cyi

j
). Then this string will look

like: 〈cx1
1, cy1

1, cx1
2, cy1

2, . . . , cx1
10, cy1

10, cx2
1, cy2

1, . . . , cx2
10, cy2

10〉.
Each string i in the archive initially contains Ki number of clusters,
such that Ki = (rand()mod(Kmax − 1)) + 2. Here, rand() is a function
returning an integer, and Kmax is a soft estimate of the upper
bound of the number of clusters. The number of initial clusters will
therefore lie between two and Kmax. Our initialization procedure
is motivated by that of [16]. Here the initialization procedure is
partly random and partly based on two  different single-objective
algorithms in order to obtain a good initial spread of solutions.
One third of the solutions in the archive is initialized after running
single linkage clustering algorithm for different values of K. Let

for the ith chromosome we execute single linkage clustering algo-
rithm with K = 3. Then for each of these three clusters sub-cluster
centers will be selected randomly from the points belonging to
that particular cluster formed after application of single linkage

http://www.isical.ac.in/~sriparna_r
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lustering algorithm. These solutions perform well when clusters
resent in the data set are well-separated. Another one third of
he solutions in the archive are generated using the K-means
lgorithm. Here again K-means is executed with different values of
umber of clusters, K. Let for ith cluster we run K-means algorithm
ith K = 2. Then for this chromosome Ki = 2. The sub-cluster centers

or cluster i are chosen from points belonging to this particular
luster formed after application of K-means algorithm. These
olutions perform well when clusters present in the data set are
yperspherical in shape. The last one third of the solutions are
enerated randomly, i.e., for these strings the Ki centers encoded
n a string are randomly selected distinct points from the data
et. The initial partitioning is obtained using a minimum center
istance based criterion. For all the initial encoded solutions, C
umber of distinct points are selected from each cluster randomly.
hese C × K number of points are encoded in that particular string.

.2. Assignment of points

For the purpose of assignment, each sub-cluster is considered
s a separate cluster. Let the particular string contain K number of
lusters. Here assignment is done based on the minimum Euclidean
istance criterion. A data point xj is assigned to the (i, l)th sub-
luster where

i, l) = argmin{de(cm
k , xj)}, for k = 1 . . . K, m = 1, . . . , C.

ere C is equal to the total number of sub-cluster centers per clus-
er. Thereafter, the partition matrix is formed in the following way:
[(i − 1) × C + l][j] = 1 and u[k][j] = 0, ∀ k = 1 . . . K × C, k /= i, l.

.3. Objective functions used

For the purpose of optimization, three different cluster valid-
ty indices are considered. These three objective functions reflect
hree different aspects of good clustering solutions. The first quan-
ifies the amount of symmetry present in a particular partitioning.
he second quantifies the connectedness of the clusters and the
hird measures the compactness of the partitionings in terms of
he Euclidean distance. These indices are described below.

.3.1. Cluster validity index based on symmetry: Sym-index [14]

This cluster validity index is based on a newly developed point

ymmetry based distance [14], dps(x, c), which is calculated as fol-
ows. Let a point be x. The symmetrical (reflected) point of x with
espect to a particular center c is 2 × c − x. Let us denote this by x∗.
ft Computing 13 (2013) 89–108 93

Let knear unique nearest neighbors of x∗ be at Euclidean distances
of dis, i = 1, 2, . . . knear. Then

dps(x, c) = dsym(x, c) × de(x, c), (4)

=
∑knear

i=1 di

knear
× de(x, c), (5)

where de(x, c) is the Euclidean distance between the point x and
c, and dsym(x, c) is a symmetry measure of x with respect to c and

is defined as (
∑knear

i=1 di)/(knear). Note that knear cannot be cho-
sen equal to 1, since in this case if x∗ exists in the data set then
dps(x, c) = 0 and hence there will be no impact of the Euclidean
distance. On the contrary, large values of knear may  not be suit-
able because it may  underestimate the amount of symmetry of
a point with respect to a particular cluster center. Here knear is
chosen equal to 2. It may  be noted that the proper value of knear
largely depends on the distribution of the data set. The properties
of dps(x, c) are thoroughly described in [13].

Sym-index [13] is a cluster validity function which measures
the overall average symmetry with respect to the cluster centers.
Consider a partition of the data set X = {xj : j = 1, 2, . . . n} into K
clusters where the center of cluster ci is computed by using ci =∑ni

j=1
x

i
j

ni
where ni (i = 1, 2, . . .,  K) is the number of points in cluster

i and xi
j denotes the jth point of the ith cluster. The new cluster

validity function Sym is defined as:

Sym(K) =
(

1
K

× 1
EK

× DK )
)

. (6)

Here,

EK =
K∑

i=1

Ei, (7)

such that

Ei =
ni∑

j=1

d∗
ps(x

i
j, ci), (8)

and

DK = maxK
i,j=1‖ci − cj‖, (9)

DK is the maximum Euclidean distance between two cluster cen-
ters among all pairs of centers. d∗

ps(x
i
j, ci) is computed by Eq. (5)

with some constraint. Here, the first knear nearest neighbors of
x∗

j = 2 × ci − xi
j will be searched among only those points which are

in cluster i, i.e., the knear nearest neighbors of x∗
j , the reflected point

of xi
j with respect to ci, and xi

j should belong to the ith cluster. The
objective is to maximize this index in order to obtain the actual
number of clusters. The explanations of the interaction between
different components of Sym-index are elaborately described in
[13].

As formulated in Eq. (6),  Sym-index is a composition of three
factors, 1/K,  1/EK and DK. The first factor increases as K decreases; as
Sym-index needs to be maximized for optimal clustering, this factor
prefers to decrease the value of K. The second factor is a measure
of the total within cluster symmetry. For clusters which have good
symmetrical structures, EK value is less. Note that as K increases, in
general, the clusters tend to become more symmetric. Moreover,
as de(x, c) in Eq. (5) also decreases, EK decreases, resulting in an
increase in the value of the Sym-index. Since Sym-index needs to
be maximized, it will prefer to increase the value of K. Finally the

third factor, DK, measuring the maximum separation between a pair
of clusters, increases with the value of K. Note that the value of DK

is bounded by the maximum separation between a pair of points
in the data set. As these three factors are complementary in nature,
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o they are expected to compete and balance each other critically
or determining the proper partitioning.

.3.2. Connectivity based cluster validity index: Con-index [22]
In this article a cluster validity index based on the concept of

onnectedness [22] of the clusters is used. This index is capable
f detecting the appropriate partitioning from data sets having
lusters of any shape, size or convexity as long as they are well-
eparated. The concept of relative neighborhood graph (RNG) [23]
as been successfully applied for solving several pattern recogni-
ion problems. An unsupervised clustering technique based on the
oncepts of RNG is developed in [24]. In this article, RNG is used to
evelop a cluster validity index, Con-index [22], that quantifies the
egree of connectivity of well-separated clusters.

.3.2.1. Measuring the connectivity among a set of points. Here a
ovel way of measuring the connectivity among a set of points using
elative neighborhood graph is used [22]. The distance between a
air of points is measured in the following way.

Construct the relative neighborhood graph of the whole data set.
The distance between any two points, x and y, denoted as dshort(x,
y), is measured along the relative neighborhood graph. Find all
possible paths among these two points along the RNG. Suppose
there are total p paths between x and y, and the number of edges
along the ith path is nedgei, for i = 1, . . .,  p. If the edges along the ith
path are denoted as edi

1, . . . , edi
nedgei

and the corresponding edge

weights are w(edi
1), . . . , w(edi

nedgei
), then the shortest distance

between x and y is defined as follows:

dshort(x, y) =
p

min
i=1

nedgeimax
j=1

w(edi
j). (10)

n order to improve the efficiency of computing dshort, we adopt the
ollowing pruning strategy. The maximum value of w(edi

j) corre-
ponding to the first path is stored in a temporary variable max. If
n any of the next path being traced, a weight value greater than

ax  is obtained, that path is pruned. However, if a smaller value of
he maximum weight is found in any of the subsequent paths, then
ax is updated to this smaller value and the process repeats.

.3.2.2. Definition of the cluster validity index. The cluster validity
ndex [22] is defined as follows. Suppose the clusters formed are
enoted by Ck, for k = 1, . . .,  K, where K is the number of clusters.
hen the medoid of the kth cluster, denoted by mk, is the point
f that cluster which has the minimum average distance to all the
ther points in that cluster. Suppose the point which has the mini-
um  average distance to all the points in the kth cluster is denoted

y xk
minindex. Then,

inindex = argminnk
i=1

∑nk
j=1de(xk

i , xk
j )

nk
,

here nk is the total number of points in the kth cluster and xk
i

enotes the ith point of the kth cluster. Then

k = xk
minindex.

The newly developed Con-index [22] is defined as follows:

on =
∑K

i=1

∑nk
j=1dshort(mi, xi

j)
K ∧ , (11)
n × min
i,j=1 i /=  j

dshort(mi, mj)

here dshort(mi, xi
j) is the shortest distance along the relative neigh-

orhood graph between the two points mi and xi
j , the jth point of the
ft Computing 13 (2013) 89–108

ith cluster. It is calculated using the procedure mentioned in Sec-
tion 3.3.2. n denotes the total number of points present in the data
set. Intuitively smaller values of Con-index corresponds to good
partitioning. In order to achieve the proper partitioning, the value
of Con-index has to be minimized.

Con-index has two components. Its denominator measures the
minimum shortest distance between any two medoids among a
total of K clusters. Thus when the clusters are well-separated, this
distance is the maximum and this in turn minimizes the Con-
index value. The numerator of the Con-index measures the total
connectedness of a particular partitioning. If the clusters are well-
connected then the shortest distance between the medoid and any
point of that particular cluster is small and thus numerator of the
Con-index also takes a very small value. Thus Con-index obtains its
minimum value when clusters are connected as well as separated
too.

3.3.3. Euclidean distance based cluster validity index: I-index
The third objective function used here is an Euclidean distance

based cluster validity index, I-index [4]. It is defined as follows:

I(K) = (
1
K

× E1

EK
× DK )p,

where K is the number of clusters. Here EK =
∑K

k=1

∑nk
j=1de(ck, xk

j )

and DK = maxK
i,j=1de(ci, cj) where cj denotes the center of the jth

cluster and xk
j denotes the jth point of the kth cluster. nk is the total

number of points present in the kth cluster. The value of K for which
I-index takes its maximum value is considered as the appropriate
number of clusters.

The index I is a composition of three factors, namely, 1/K,  E1/EK ,
and DK. The first factor will try to reduce index I as K is increased.
The second factor consists of the ratio of E1, which is constant for a
given data set, and EK , which decreases with increase in K. Hence,
because of this term, index I increases as EK decreases. This, in turn,
indicates that formation of more numbers of clusters, which are
compact in nature, would be encouraged. Finally, the third factor,
DK (which measures the maximum separation between two  clus-
ters over all possible pairs of clusters), will increase with the value
of K. However, note that this value is upper bounded by the maxi-
mum separation between two points in the data set. Thus, the three
factors are found to compete with and balance each other critically.
The power p is used to control the contrast between the different
cluster configurations. In this article, we have taken p = 2.

3.4. Subcluster merging for objective function calculation

Before computing the above mentioned three objective func-
tions for each string, first the total C × K number of sub-clusters
encoded in a particular string are merged to form a total of K clus-
ters. The merging operation is done in the following way. First,
the shortest distance between each pair of C × K cluster medoids
along the relative neighborhood graph is computed. This provides
a distance matrix denoted as distanceshort, i.e.,

distanceshort = [dshort(ci, cj)]i,j=1...C×K .

Thereafter single linkage clustering technique [25] is executed
on these cluster centers K times with this modified distance mea-
sure, distanceshort, each time merging C number of clusters to form
a single cluster.

Note that after initialization each of the K clusters is formed by
C subclusters, and that the representation contains all K × C sub-

cluster centroids one after another. But after mutation operation
some subcluster centers will be modified by some amount. It will
break the order. Thus reshuffling is required. So we have merged
subcluster centers according to their closeness to each other.
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After the merging operation is done, the three cluster validity
ndices are computed for each string. Thus the objective functions
or a particular string are:

bj = {Sym(K),
1

Con(K)
, I(K)},

here Sym(K), Con(K) and I(K) are, respectively, the calculated Sym-
ndex value, Con-index value and I-index value for that particular
tring. Here K denotes the number of clusters present in that par-
icular string. These three objective functions are simultaneously

aximized using the simulated annealing based MOO  algorithm,
MOSA.

.5. Mutation operation

A new string is generated from the current one by adopting one
f the following three types of mutations.

1) Each cluster center encoded in a string is replaced with
a random variable drawn from a Laplacian distribution,
p(�) ∝ e−((|�−�|)/ı), where the scaling factor ı sets the magni-
tude of perturbation. Here � is the value at the position which
is to be perturbed. The scaling factor ı is chosen equal to 1.0.
The old value at the position is replaced with the newly gener-
ated value. Here this type of mutation operator is applied for all
dimensions independently.

2) A total of C sub-cluster centers are removed from the string, i.e.,
the total number of clusters present in that string is decreased
by 1.

3) The total number of clusters present in that chromosome is
increased by 1. C randomly chosen points from the data set are
encoded as the new sub-cluster centers.

ny one of the above mentioned types of mutation is applied with
niform probability on a particular string if it is selected for muta-
ion.

.6. Selection of the best solution

In MOO, the algorithms produce a large number of non-
ominated solutions [26] on the final Pareto optimal front. Each of
hese solutions provides a way of clustering the given data set. All
he solutions are equally important from the algorithmic point of
iew. However the user may  sometimes want only a single solution.
onsequently, in this paper a semi-supervised method of selecting

 single solution from the set of solutions, is now developed.
Here we assume that the class labels of some of the points

denoted as test patterns) are known to us. The proposed GenClust-
OO  produces a set of Pareto optimal solutions. The clustering

ssociated with each solution from the final Pareto optimal set is
sed to assign the cluster labels of the test patterns based on the
earest center criterion. The amount of misclassification is calcu-

ated by computing the Minkowski score values. Minkowski score is
 measure of the quality of a solution given the true clustering [27].
et T be the “true” solution and S the solution we wish to measure.
enote by n11 the number of pairs of elements that are in the same
luster in both S and T. Denote by n01 the number of pairs that are
n the same cluster only in S, and by n10 the number of pairs that
re in the same cluster in T but in different clusters in S. Minkowski
core is then defined as:√

M(T, S) = n01 + n10

n11 + n10
. (12)

In this case the optimum score is 0, with lower scores being
better”.
ft Computing 13 (2013) 89–108 95

The solution with the minimum Minkowski score value calcu-
lated over the test patterns is selected as the best solution.

4. Experimental results

4.1. Data sets used

Nineteen artificial data sets and seven real-life data sets are used
for the experiments. A description of the data sets in terms of the
number of points present, dimension of the data set and the number
of clusters is presented in Table 1. These data sets are divided into
four groups.

(1) Group 1: The first group of data sets contains symmetrical
shaped clusters e.g., ring-shaped clusters, ellipsoidal clusters,
etc.
(a) Sym 5 2: This data set, used in [13], contains 850 data points

distributed on five clusters, as shown in Fig. 4(a).
(b) Sym 3 2: This data set contains 600 data points distributed

on three clusters, as shown in Fig. 4(b).
(c) Ellip 2 2: This data set, used in [13], contains 400 points dis-

tributed on two  crossed ellipsoidal shells shown in Fig. 4(c).
(d) Ring 3 2: This data set, used in [13], is a combination of ring-

shaped, spherically compact and linear clusters shown in
Fig. 4(d).

(e) Rect 3 2: This data set, used in [14], is a combination of ring-
shaped, compact and linear clusters shown in Fig. 4(e).

(2) Group 2: This group of data sets contains hyperspherical shaped
clusters. Some of these data sets contain highly overlapping
clusters.
(a) Sph 5 2: This data set, used in [10], consists of 250 two

dimensional data points distributed over 5 spherically
shaped clusters. The clusters present in this data set are
highly overlapping, each consisting of 50 data points. This
data set is shown in Fig. 4(f).

(b) Sph 4 3: This data set, used in [10], consists of 400 points
distributed over 4 hyperspherical shaped clusters. This data
set is shown in Fig. 4(g). The clusters present in this data set
are well-separated, each consisting of 100 data points.

(c) Sph 6 2: This data set, used in [10], consists of 300 data
points distributed over 6 different clusters in two  dimen-
sions. The clusters are of same sizes. This data set is shown
in Fig. 4(h).

(d) Sph 10 2: This data set, used in [28], consists of 500 two
dimensional data points distributed over 10 different clus-
ters. Some clusters are overlapping in nature. Each cluster
consists of 50 data points. This data set is shown in Fig. 4(i).

(e) Sph 9 2: This data set, used in [28], consists of 900 points in
2-dimensional space distributed over 9 clusters. Each clus-
ter contains 100 data points and the clusters are highly
overlapping to each other. This data set is displayed in
Fig. 4(j).

(3) Group 3: This group of data sets contains well-separated clus-
ters of different shapes, sizes and convexities.
(a) Pat1: This data, used in [29], consists of 880 patterns. There

is one non convex cluster present in this data set. This is
shown in Fig. 4(k).

(b) Pat2: This data set, used in [30], consists of 2 non-linear,
non-overlapping and non-symmetric clusters. The data set
is shown in Fig. 4(l).
(c) Long1:  This data set, used in [16], consists of 1000 data points
distributed over 2 long clusters. This is shown in Fig. 4(m).

(d) Sizes5: This data set, used in [16], consists of 1000 data points
distributed over 4 squares. This is shown in Fig. 4(n).
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Table 1
Results on different data sets by GenClustMOO,  MOCK,  VGAPS, GenClustPESA2, KM (K-means), SL (single linkage) clustering algorithms. Here d, K, OC, FM denote respectively the
dimension, the number of clusters, obtained number of clusters and F-measure, respectively. Here each algorithm is executed thirty times and the best results are presented.

Data set # points d K GenClustMOO MOCK VGAPS GenClustPESA2

OC FS OC FS OC FS OC FS

Sym 5 2 850 2 5 5 1.00 5 1.00 5 1.00 5 1.00
Sym 3 2 600 2 3 3 0.97 2 0.78 3 0.97 3 0.97
Ellip  2 2 400 2 2 2 0.98 4 0.67 2 1.00 2 0.98
Ring 3 2 350 2 3 3 0.97 2 0.81 3 0.97 3 0.97
Rect  3 2 400 2 3 3 1.00 3 1.00 6 0.74 3 1.00
Sph  5 2 250 2 5 5 0.97 6 0.91 5 0.55 5 0.94
Sph  4 3 400 3 4 4 1.00 4 1.00 4 1.00 4 1.00
Sph 6 2 300 2 6 6 1.00 6 1.00 6 1.00 6 1.00
Sph 10 2 500 2 10 10 0.99 6 0.72 7 0.76 12 0.94
Sph  9 2 900 2 9 9 0.69 9 0.73 9 0.49 8 0.66
Pat1  557 2 3 3 0.95 10 0.55 4 0.42 3 0.95
Pat2  417 2 2 2 1.00 11 0.55 4 0.59 2 1.00
Long1  1000 2 2 2 1.00 2 1.00 3 0.50 2 1.00
Sizes5  1000 2 4 4 0.97 2 0.80 5 0.82 3 0.88
Spiral  1000 2 2 2 1.00 3 0.95 6 0.38 2 1.00
Square1 1000 2 4 4 0.99 4 0.99 4 0.99 4 0.99
Square4 1000 2 4 4 0.92 4 0.90 5 0.93 4 0.88
Twenty 1000 2 20 20 1.00 20 1.00 20 0.48 24 0.95
Forty  1000 2 40 40 1.00 40 1.00 2 0.095 42 0.98
Iris 150  4 3 3 0.79 2 0.78 3 0.76 3 0.93
Cancer 683 9 2 2 0.969 2 0.82 2 0.95 2 0.97
Newthy. 215 5 3 3 0.86 2 0.74 5 0.66 9 0.69
Wine  178 13 3 3 0.71 3 0.73 6 0.62 13 0.44
LiverDis. 345 6 2 2 0.67 2 0.67 2 0.70 5 0.60

 

 

(

LungCan. 33 56  2 2 0.80
Glass  214 9 6 6 0.49

(e) Spiral: This data set, used in [16], consists of 1000 data points
distributed over 2 spiral clusters. This is shown in Fig. 4(o).

(f) Square1: This data set, used in [16], consists of 1000 data
points distributed over 4 squared clusters. This is shown in
Fig. 4(p).

(g) Square4: This data set, used in [16], consists of 1000 data
points distributed over 4 squared clusters. This is shown in
Fig. 4(q).

(h) Twenty: This data set, used in [16], consists of 1000 data
points distributed over 20 small clusters. This is shown in
Fig. 4(r).

(i) forty: This data set, used in [16], consists of 1000 data points
distributed over 40 small clusters. This is shown in Fig. 4(s).

4) Group 4: This group consists of seven real-life data sets obtained
from [31].
(a) Iris: This data set consists of 150 data points distributed

over 3 clusters. Each cluster consists of 50 points. This data
set represents different categories of irises characterized by
four feature values [32]. It has three classes Setosa, Versi-
color and Virginica. It is known that two classes (Versicolor
and Virginica) have a large amount of overlap while the class
Setosa is linearly separable from the other two.

(b) Cancer:  Here we use the Wisconsin Breast Cancer data set, it
consists of 683 sample points. Each pattern has nine features
corresponding to clump thickness, cell size uniformity,
cell shape uniformity, marginal adhesion, single epithe-
lial cell size, bare nuclei, bland chromatin, normal nucleoli
and mitoses. There are two categories in the data: malig-
nant and benign. The two classes are known to be linearly
separable.

(c) Newthyroid: The original database from where it has been
collected is titled as Thyroid gland data (‘normal’, ‘hypo’
and ‘hyper’ functioning). Five laboratory tests are used to

predict whether a patient’s thyroid belongs to the class
euthyroidism, hypothyroidism or hyperthyroidism. There
are a total of 215 instances and the number of attributes is
five.
7 0.44 3 0.74 4 0.84
5 0.53 5 0.53 5 0.53

(d) Wine: This is the Wine recognition data consisting of 178
instances having 13 features resulting from a chemical anal-
ysis of wines grown in the same region in Italy but derived
from three different cultivars. The analysis determined the
quantities of 13 constituents found in each of the three types
of wines.

(e) LiverDisorder: This is the Liver Disorder data consisting of
345 instances having 6 features each. The data has two cat-
egories.

(f) LungCancer: This data consists of 32 instances having 56 fea-
tures each. The data describes 3 types of pathological lung
cancers.

(g) Glass: This is a glass identification data consisting of 214
instances having 9 features (an Id# feature has been
removed). The study of the classification of the types of glass
was motivated by criminological investigation. At the scene
of the crime, the glass left can be used as evidence, if it is
correctly identified. There are 6 categories present in this
data set.

4.2. Performance measures

In order to evaluate the performance of all the clustering algo-
rithms quantitatively, here we have used a measure which is
usually used to quantify the performance of a classification model
[16]. It assumes that the class labels of each point are known before
hand. The measure is defined below [16]:

(1) Precision = The fraction of a cluster that consists of objects of
a specified class. Precision of cluster i with respect to class j
is precision(i, j) = pij = mij/mi, where mij is the number of points

which belong to cluster i and class j both, and mi is the total
number of points in cluster i.

(2) Recall = The extent of which a cluster contains all objects of a
specified class.
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ig. 4. (a) Sym 5 2, (b) Sym 3 2, (c) Ellip 2 2, (d) Ring 3 2, (e) Rect 3 2, (f) Sph 5 2, (g
piral,  (p) Square1, (q) Square4, (r) Twenty, and (s) forty.

The recall of cluster i with respect to class j is recall(i,
j) = mij/mj, where mj is the number of objects in class j.

3) F-measure = A combination of both precision and recall that

measures the extent to which a cluster contains only objects
of a particular class and all objects of that class.

The F-measure of cluster i with respect to class j is F(i,
j) = (2 × precision(i, j) × recall(i, j))/(precision(i, j) + recall(i, j))
4 3, (h) Sph 6 2, (i) Sph 10 2, (j) Sph 9 2, (k) Pat1, (l) Pat2, (m) Long1,  (n) Sizes5,  (o)

(4) The overall F-measure of the whole partitioning is calculated
as:
F =
∑

j

mj

m
max

i
F(i, j),
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Table 2
Final F-measure values on different data sets by GenClustMOO,  MOCK,  VGAPS, GenClustPESA2, KM (K-means), SL (single linkage) clustering algorithms. The best methods for
each  data set are marked in bold. Here each algorithm is executed thirty times and the average results with standard deviations are presented.

Data set GenClustMOO GenClustMOO2 MOCK VGAPS GenClustPESA2 KM SL

Sym 5 2 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.815 ± 0.02 1.00 ± 0.00
Sym 3 2 0.967 ± 0.01 0.561 ± 0.02 0.771 ± 0.012 0.961 ± 0.021 0.963 ± 0.011 0.951 ± 0.013 0.771 ± 0.0123
Ellip  2 2 0.971 ± 0.011 0.248 ± 0.012 0.667 ± 0.014 1.00 ± 0.0101 0.968 ± 0.001 0.772 ± 0.008 0.723 ± 0.02
Ring  3 2 0.964 ± 0.021 0.741 ± 0.017 0.801 ± 0.011 0.961 ± 0.013 0.961 ± 0.021 0.841 ± 0.011 0.808 ± 0.013
Rect  3 2 1.00 ± 0.00 0.747 ± 0.012 1.00 ± 0.00 0.736 ± 0.011 1.00 ± 0.00 0.931 ± 0.021 1.00 ± 0.00
Sph  5 2 0.957 ± 0.021 0.841 ± 0.013 0.902 ± 0.0113 0.541 ± 0.011 0.936 ± 0.012 0.938 ± 0.015 0.661 ± 0.012
Sph 4 3 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Sph 6 2 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Sph  10 2 0.981 ± 0.011 0.636 ± 0.021 0.717 ± 0.013 0.752 ± 0.0109 0.931 ± 0.021 0.891 ± 0.014 0.841 ± 0.011
Sph  9 2 0.681 ± 0.012 0.632 ± 0.011 0.717 ± 0.009 0.481 ± 0.012 0.652 ± 0.018 0.683 ± 0.013 0.25 ± 0.014
Pat1  0.946 ± 0.013 0.476 ± 0.012 0.547 ± 0.011 0.418 ± 0.014 0.946 ± 0.009 0.618 ± 0.008 0.882 ± 0.011
Pat2  1.00 ± 0.012 0.473 ± 0.009 0.545 ± 0.013 0.582 ± 0.021 1.00 ± 0.00 0.754 ± 0.013 1.00 ± 0.00
Long1 1.00 ±  0.00 1.00 ± 0.00 1.00 ± 0.00 0.487 ± 0.021 1.00 ± 0.00 0.5 ± 0.011 1.00 ± 0.00
Sizes5  0.968 ± 0.001 0.717 ± 0.011 0.791 ± 0.012 0.816 ± 0.013 0.883 ± 0.011 0.226 ± 0.021 0.181 ± 0.011
Spiral 1.00  ± 0.00 0.553 ± 0.021 0.948 ± 0.011 0.373 ± 0.016 1.00 ± 0.00 0.509 ± 0.011 0.504 ± 0.015
Square1  0.999 ± 0.013 0.999 ± 0.015 0.999 ± 0.012 0.999 ± 0.014 0.99 ± 0.014 0.732 ± 0.021 0.368 ± 0.006
Square4 0.918 ±  0.014 0.919 ± 0.016 0.895 ± 0.011 0.925 ± 0.013 0.878 ± 0.011 0.715 ± 0.015 0.368 ± 0.016
Twenty  1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.479 ± 0.022 0.948 ± 0.015 0.809 ± 0.003 0.947 ± 0.009
Forty  1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.095 ± 0.006 0.979 ± 0.015 0.798 ± 0.018 0.909 ± 0.023
Iris  0.788 ± 0.011 0.718 ± 0.016 0.775 ± 0.022 0.754 ± 0.013 0.926 ± 0.015 0.887 ± 0.001 0.764 ± 0.009
Cancer  0.969 ± 0.009 0.755 ± 0.011 0.819 ± 0.014 0.953 ± 0.012 0.979 ± 0.014 0.961 ± 0.013 0.688 ± 0.008
Newthy. 0.863 ±  0.016 0.718 ± 0.0018 0.739 ± 0.014 0.659 ± 0.011 0.687 ± 0.015 0.677 ± 0.013 0.648 ± 0.009
Wine  0.709 ± 0.012 0.608 ± 0.006 0.726 ± 0.002 0.617 ± 0.008 0.437 ± 0.012 0.709 ± 0.011 0.502 ± 0.013
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LiverDis. 0.673 ±  0.002 0.672 ± 0.007 0.671 ± 0.012 

LungCan. 0.802 ± 0.014 0.664 ± 0.019 0.443 ± 0.011 

Glass  0.494 ± 0.012 0.495 ± 0.013 0.534 ± 0.006 

where the maximum is taken over all clusters i at all levels, mj
is the number of objects in class j, and m is the total number of
objects. F-measure (FM) is a measure of the quality of a solution
given the true clustering. For F-measure, the optimum score is
1, with higher scores being “better”.

Here F-measure values are calculated and reported for the
final solutions of GenClustMOO,  MOCK, VGAPS, GenClustPESA2,
K-means and single linkage clustering techniques.

. Discussion of results
In GenClustMOO,  a newly developed simulated annealing based
OO technique, AMOSA, is used as the underlying optimization

echnique. The parameters of the proposed GenClustMOO cluster-
ng technique are as follows: SL = 100 HL = 50, iter = 50, Tmax = 100,

ig. 5. Automatically clustered Sym 5 2 after application of GenClustMOO/VGAPS
lustering technique, and MOCK clustering technique for K = 5. Here we  have used
ymbols ‘+’, ‘�’, ‘∗’, ‘�’ and ‘
’ to represent different clusters.
05 ± 0.009 0.603 ± 0.015 0.655 ± 0.013 0.672 ± 0.006
41 ± 0.008 0.843 ± 0.002 0.566 ± 0.005 0.236 ± 0.01
34 ± 0.008 0.534 ± 0.012 0.492 ± 0.014 0.422 ± 0.007

Tmin = 0.00001 and cooling rate,  ̨ = 0.9. We  have kept the num-
ber of sub-cluster centers per cluster (C) = 10. For the purpose of
comparison, another automatic MOO  clustering technique, MOCK
[16] is also executed on the above mentioned data sets. The
source code for MOCK is obtained from [33] and the default
parameter values are used. In MOCK the final best solution is
selected by GAP-statistics [34]. The number of clusters auto-
matically determined by the proposed GenClustMOO and MOCK
clustering techniques for all the above mentioned data sets are
shown in Table 1. This table also contains the F-measure values
of the final clusterings identified by these two algorithms. We  have
also compared our proposed technique with two traditional clus-
tering techniques, K-means and single linkage clustering. These
two algorithms are executed on all data sets with actual num-
ber of clusters. The final F-measure values are reported in Table 1.
In order to show the effectiveness of AMOSA as the underlying
optimization technique in GenClustMOO,  we  have also shown the
results for all the data sets obtained by GenClustPESA2 that has
exactly the same approach of GenClustMOO,  with the underlying
MOO strategy replaced by PESA2. The number of clusters and the
corresponding F-measure values are reported in Table 1.

In order to show that the proposed multiobjective clustering
technique (GenClustMOO) performs better than a single objective
version, variable string length point symmetry based clustering
technique (VGAPS-clustering) [13], is also executed on the above
mentioned data sets. The parameter values of VGAPS clustering are
as follows: population size = 100, number of generations = 60 (exe-
cuting the algorithm further did not improve the performance).
Mutation and crossover probabilities are calculated adaptively.
Note that here all the algorithms are executed for equal number
of function evaluations. Total function evaluations performed by
AMOSA based approach is equal to the total function evaluations
of MOCK, VGAPS and GenClustPESA2.  This is also same as the total
number of iterations of K-means and SL algorithms. Each of the algo-
rithms are executed thirty times and the average results along with

the standard deviations are reported in Table 2. The best results of
these thirty runs for all the algorithms are also reported in Table 1.

The clusters present in the data sets of group 1 are symmet-
rical in shape. Thus the proposed GenClustMOO is able to detect
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ig. 6. Automatically clustered Sym 3 2 after application of (a) GenClustMOO clust
lusters: ‘
’, ‘∗’, ‘◦’. (b) MOCK clustering technique for K = 2; symbols used to denote

he appropriate number of clusters and the appropriate clustering
rom all these data sets (refer to Table 1). The final clusterings iden-
ified by GenClustMOO for the data sets of this group are shown
n Figs. 5(a), 6(a), 7(a), 8(a) and 9(a), respectively. MOCK [16] is
lso executed on these data sets. Except for data sets having well-
eparated clusters, e.g., Sym 5 2 and Rect 3 2, MOCK fails to detect
he appropriate clustering for the data sets in this group (refer
o Table 1). The clusterings identified by MOCK for the five arti-
cial data sets of this group are shown in Figs. 5(b), 6(b), 7(b), 8(b)
nd 9(b), respectively. VGAPS-clustering performs similarly to Gen-
lustMOO clustering for most of the data sets of this group. It is able
o identify the appropriate number of clusters and the appropriate
lustering from data sets Mixed 5 2, Ring 3 2, Ellip 2 2 and Sym 3 2

refer to Table 1). But it fails for data set Rect 3 2. The correspond-
ng segmentation results are shown in Figs. 5(a), 6(a), 7(a), 8(c) and
(a), respectively. For the data sets of this group, GenClustPESA2 and

ig. 7. Automatically clustered Ellip 2 2 after application of (a) GenClustMOO/VGAPS cluste
lustering technique for K = 4; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘+’, ‘�’.
technique/VGAPS clustering technique for K = 3; symbols used to denote different
ent clusters: ‘∗’, ‘◦’.

GenClustMOO perform almost similarly (refer to Table 1). K-means
fails to detect appropriate clusterings from these data sets. Sin-
gle linkage succeeds in case of Sym 5 2 and Rect 3 2 but fails for
other data sets. This is because single linkage can only detect well-
separated clusters.

The clusters present in the data sets of group 2 are hyper-
spherical in shape. The proposed GenClustMOO is able to identify
automatically the appropriate number of clusters and the appro-
priate clustering from these data sets (refer to Table 1). The
clusterings obtained by GenClustMOO for these data sets are shown
in Figs. 10(a), 11, 12,  13(a) and 14(a), respectively. MOCK is able to
detect the appropriate number of clusters from three data sets of
this group (refer to Table 1). The clusterings obtained by MOCK

for the data sets of this group are shown in Figs. 10(b), 11, 12,
13(b) and 14(b), respectively. The F-measure values obtained by
GenClustMOO for these data sets are also higher than or equal to

ring technique for K = 2; symbols used to denote different clusters: ‘∗’, ‘◦’. (b) MOCK
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Fig. 8. Automatically clustered Rect 3 2 after application of (a) GenClustMOO clustering technique/MOCK clustering technique for K = 3; symbols used to denote different
clusters: ‘∗’, ‘+’, ‘
’. (b) VGAPS clustering technique for K = 6; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘�’, ‘+’, ‘
’, ‘�’.

Fig. 9. Automatically clustered Ring 3 2 after application of (a) GenClustMOO/VGAPS clustering technique for K = 3; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’. (b)
MOCK  clustering technique for K = 2; symbols used to denote different clusters: ‘∗’, ‘◦’.

Fig. 10. Automatically clustered Sph 5 2 after application of (a) GenClustMOO clustering technique for K = 5; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘♦’, ‘�’, ‘
’. (b)
MOCK  clustering technique for K = 6; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘+’, ‘�’, ‘·’, ‘hexagon’. (b) VGAPS clustering technique for K = 5; symbols used to denote
different clusters: ‘∗’, ‘◦’, ‘·’, ‘
’, ‘♦’.
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Fig. 11. Automatically clustered Sph 4 3 after application of GenClustMOO,  MOCK
and  VGAPS clustering techniques for K = 4; symbols used to denote different clusters:
‘∗’, ‘◦’, ‘
’, ‘�’.
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ig. 12. Automatically clustered Sph 6 2 after application of GenClustMOO,  MOCK
nd  VGAPS clustering techniques for K = 6; symbols used to denote different clusters:
∗’, ‘
’, ‘♦’, ‘�’, ‘×’, ‘+’.
hose obtained by MOCK (refer to Table 1). VGAPS-clustering is
ble to detect the appropriate number of clusters from Sph 5 2,
ph 4 3, Sph 6 2 and Sph 9 2 data sets. But the clusterings obtained
y VGAPS for Sph 5 2 and Sph 9 2 data sets are not perfect. The

ig. 13. Automatically clustered Sph 10 2 after application of (a) GenClustMOO clustering
+’,  ‘×’, ‘·’, ‘�’. (b) MOCK clustering technique for K = 6; symbols used to denote different cl
sed  to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘♦’, ‘�’, ‘×’, ‘
’.
ft Computing 13 (2013) 89–108 101

clusterings obtained by VGAPS for Sph 5 2, Sph 4 3, Sph 6 2,
Sph 10 2 and Sph 9 2 data sets are shown in Figs. 10(c), 11, 12,  13(c)
and 14(c), respectively. VGAPS is not able to detect the proper clus-
tering for Sph 10 2 data set. GenClustPESA2 clustering technique
fails to detect the proper number of clusters from Sph 10 2 and
Sph 9 2 data sets. But for the other three data sets, its performance
is quite similar to that of GenClustMOO.  For Sph 9 2 data set, MOCK
performs better than GenClustMOO (refer to Table 1). K-means is
able to detect the appropriate clustering from Sph 5 2, Sph 4 3,
Sph 6 2 and Sph 10 2 data sets. But it fails for Sph 9 2 data set. Single
linkage fails for most of these data sets except Sph 4 3 and Sph 6 2
which contain well-separated clusters.

The clusters present in the data sets of group 3 are well-
separated having any shape, size or convexity. These data sets
are used to show the performance of the algorithms for detecting
some well-separated clusters. Our proposed GenClustMOO is able to
detect the appropriate number of clusters and the appropriate clus-
tering from all nine data sets of this group. The clusterings identified
by GenClustMOO for all these nine data sets are shown in Figs. 15(a),
16(a), 17(a), 18(a), 19(a), 20(a), 21(a), 22(a) and 23(a), respectively.
MOCK is able to detect the appropriate number of clusters from
five out of nine data sets of this group. The clusterings are shown in
Figs. 15(b), 16(b), 17(b), 18(b), 19(b), 20(b), 21(b), 22(b) and 23(b),
respectively. VGAPS-clustering is able to detect the proper cluster-
ing and the proper number of clusters from only one out of nine data
sets of this group. The clusterings are shown in Figs. 15(c), 16(c),
17(c), 18(c), 19(c), 20(c), 21(c), 22(c) and 23(c), respectively. Gen-
ClustPESA2 clustering technique performs poorly for Sizes5,  Twenty
and Forty data sets (refer to Table 1). For other data sets of group
3, GenClustPESA2 and GenClustMOO clustering techniques perform
similarly. K-means in general fails for the data sets of these group.
Single linkage is able to detect appropriate clustering from Pat2,
Long, Twenty and Forty data sets (refer to Table 1).

For the real-life data sets no visualization is possible as these
are higher dimensional data sets. Here we have reported the best
F-measure values obtained by the six algorithms over five runs for
all data sets. For Iris data set both GenClustMOO and VGAPS cluster-
ing techniques are able to detect the appropriate number of clusters
from this data set. But the F-measure value attained by GenClust-
MOO clustering technique is slightly higher than that obtained by
VGAPS (refer to Table 1). MOCK automatically identifies K = 2 num-
ber of clusters for this data set which is also often obtained for many
other methods of Iris [35]. F-measure value obtained by GenClust-

PESA2 is the best among all the clustering algorithms. For Cancer
data set all the three algorithms are able to detect the appropri-
ate number of clusters (K = 2) for this data set. But the F-measure
value obtained by GenClustMOO is higher than those corresponding

 technique for K = 10; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘�’, ‘♦’, ‘
’,
usters: ‘∗’, ‘◦’, ‘·’, ‘+’, ‘�’, ‘hexagon’. (c) VGAPS clustering technique for K = 7; symbols
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Fig. 14. Automatically clustered Sph 9 2 after application of (a) GenClustMOO clustering technique for K = 9; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘♦’, ‘�’, ‘×’,
‘
’,  ‘�’, ‘+’. (b) MOCK clustering technique for K = 9; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘+’, ‘�’, ‘×’, ‘�’, ‘�’, ‘Hexagon’. (c) VGAPS clustering technique for K = 9;
symbols  used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘♦’, ‘�’, ‘×’, ‘
’, ‘+’, ‘�’.
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ig. 15. Automatically clustered Pat1 after application of (a) GenClustMOO cluster
lustering technique for K = 10; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, 

enote  different clusters: ‘×’, ‘◦’, ‘·’, ‘�’.

o MOCK and VGAPS. This in turn indicates that the proposed algo-
ithm provides more better clustering for this data set than MOCK
nd VGAPS. For Newthyroid data set, proposed GenClustMOO is able
o detect the appropriate number of clusters from this data set but

OCK and VGAPS fail to do so. The F-measure value of the cluster-
ng identified by GenClustMOO for this data set is also much higher

han those obtained by MOCK and VGAPS (refer to Table 1). For Wine
nd LiverDisorder data sets both GenClustMOO and MOCK clustering
lgorithms are able to detect the appropriate number of clusters.

ig. 16. Automatically clustered Pat2 after application of (a) GenClustMOO clustering techn
echnique for K = 11; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘�’, ‘×’, ‘
’, ‘+’, ‘�
ifferent clusters: ‘◦’, ‘·’, ‘�’, ‘×’.
chnique for K = 3; symbols used to denote different clusters: ‘∗’, ‘·’, ‘
’. (b) MOCK
, ‘
’, ‘+’, ‘�’, ‘hexagon’, ‘�’. (c) VGAPS clustering technique for K = 4; symbols used to

The F-measure values obtained by these two algorithms are also
comparable. But VGAPS fails to identify the appropriate number of
clusters for Wine data set. For LungCancer data set, only GenClust-
MOO is able to detect the appropriate number of clusters from this
data set. Among the real-life data sets for only Iris and LungCancer
data sets GenClustPESA2 performs better than GenClustMOO (refer

to Table 1). For Newthyroid, Glass, Wine and LiverDisorder, it per-
forms poorly. Performance of GenClustPESA2 for Cancer data set is
quiet similar to that of GenClustMOO.  K-means is able to detect the

ique for K = 2; symbols used to denote different clusters: ‘∗’, ‘·’. (b) MOCK clustering
’, ‘hexagon’, ‘∇ ’. (c) VGAPS clustering technique for K = 4; symbols used to denote
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Fig. 17. Automatically clustered Long1 after application of (a) GenClustMOO clustering technique for K = 2; symbols used to denote different clusters: ‘∗’, ‘·’. (b) MOCK clustering
technique for K = 2; symbols used to denote different clusters: ‘∗’, ‘◦’. (c) VGAPS clustering technique for K = 3; symbols used to denote different clusters: ‘+’, ‘◦’, ‘·’.
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ig. 18. Automatically clustered Sizes5 after application of (a) GenClustMOO cluster
lustering technique for K = 2; symbols used to denote different clusters: ‘◦’, ‘�’. (c) V
�’.

ppropriate clustering from Iris and Cancer data sets. single linkage
n general is not able to detect appropriate clustering from any of
hese real-life data sets.

.1. Results by spectral clustering technique [36] and DB-scan
lustering technique [37,38]
In a part of the experiment we have also executed spec-
ral clustering technique [36] and DB-scan clustering technique
37,38]. Spectral clustering toolbox is obtained from [36]. Here
efault parameter values are used. Spectral clustering technique

ig. 19. Automatically clustered Spiral after application of (a) GenClustMOO clustering tech
echnique for K = 3; symbols used to denote different clusters: ‘◦’, ‘·’, ‘+’. (c) VGAPS clusterin
chnique for K = 4; symbols used to denote different clusters: ‘∗’, ‘·’, ‘�’, ‘+’. (b) MOCK
 clustering technique for K = 5; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’,

is executed on Sym 3 2, Ring 3 2, Ellip 2 2 and Sph 4 3 data sets.
The partitioning results are shown in Fig. 24(a)–(d), respectively.
Results show that it fails for most of the data sets. Spectral clustering
is only able to detect the appropriate partitioning from Sph 4 3 data
set but it fails for other three data sets. The code of DB-scan is down-
loaded from [39]. Here again default parameter values are used. The
partitioning results obtained by this technique on Sym 3 2, Ring 3 2,

Ellip 2 2 and Sph 4 3 data sets are shown in Fig. 25(a)–(d), respec-
tively. These results again show that DB-scan fails for most of the
data sets used here. It only succeeds for Sph 4 3 data set but fails
for other three data sets.

nique for K = 2; symbols used to denote different clusters: ‘◦’, ‘·’. (b) MOCK clustering
g technique for K = 6; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘�’, ‘×’, ‘+’.
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Fig. 20. Automatically clustered Square1 after application of (a) GenClustMOO clustering technique for K = 4; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘+’. (b) MOCK
clustering technique for K = 4; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘�’. (c) VGAPS clustering technique for K = 4; symbols used to denote different clusters: ‘∗’,
‘◦’,  ‘♦’, ‘�’.
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ig. 21. Automatically clustered Square4 after application of (a) GenClustMOO cluste
lustering technique for K = 4; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘�
◦’,  ‘·’, ‘♦’, ‘�’.

.2. Results using other methods of selecting a single solution
rom the archive

Here we have shown results using another approach of select-
ng the best solution from the Archive along with GenClustMOO.

n this approach one single solution is selected from the Archive
ased on a cluster validity index, Silhouette-index [40]. To validate
n obtained partitioning, several cluster validity indices [25] have
een proposed in the literature. Silhouette index is a cluster validity

ig. 22. Automatically clustered Twenty after application of (a) GenClustMOO clustering t

’,  ‘+’, ‘�’, ‘hexagon’, ‘∇ ’, ‘�’, ‘�’. (b) MOCK clustering technique for K = 20; symbols used t
GAPS  clustering technique for K = 20; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·
echnique for K = 4; symbols used to denote different clusters: ‘∗’, ‘·’, ‘�’, ‘+’. (b) MOCK
GAPS clustering technique for K = 5; symbols used to denote different clusters: ‘∗’,

index that is used to judge the quality of any clustering solution
C. Suppose a represents the average distance of a point from the
other points of the cluster to which the point is assigned, and b
represents the minimum of the average distances of the point from
the points of the other clusters. Now the silhouette width s of the

point is defined as:

s = (b − a)
max{a, b} . (13)

echnique for K = 20; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘♦’, ‘�’, ‘×’,
o denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘♦’, ‘�’, ‘×’, ‘
’, ‘+’, ‘�’, ‘hexagon’, ‘∇ ’, ‘�’, ‘�’. (c)
’, ‘♦’, ‘�’, ‘×’, ‘
’, ‘+’, ‘�’, ‘hexagon’, ‘∇ ’, ‘�’, ‘�’.
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Fig. 23. Automatically clustered Forty after application of (a) GenClustMOO clustering technique for K = 40; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘♦’, ‘�’, ‘×’, ‘
’,
‘+’,  ‘�’, ‘hexagon’, ‘∇ ’, ‘�’, ‘�’. (b) MOCK clustering technique for K = 40; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘♦’, ‘�’, ‘×’, ‘
’, ‘+’, ‘�’,  ‘hexagon’, ‘∇ ’, ‘�’, ‘�’. (c)
VGAPS  clustering technique for K = 2; symbols used to denote different clusters: ‘∗’, ‘◦’, ‘·’, ‘♦’, ‘�’, ‘×’, ‘
’, ‘+’, ‘�’, ‘hexagon’, ‘∇ ’, ‘�’, ‘�’.
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Fig. 24. Partitionings obtained by spectral clustering technique for (a) Sym 3 2 (b) Ring 3 2 (c) Ellip 2 2 and (d) Sph 4 3. Symbols used to denote different clusters: (a) ‘∗’, ‘◦’,
‘·’  (b) ‘∗’, ‘◦’, ‘·’ (c) ‘∗’, ‘·’, (d) ‘∗’, ‘◦’, ‘
’, ‘∗’.
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ig. 25. Partitionings obtained by DB-scan clustering technique for (a) Sym 3 2 (b)
b)  ‘∗’, ‘·’ (c) ‘∗’ (d) ‘∗’, ‘·’, ‘◦’, ‘�’.

Silhouette index s(C) is the average Silhouette width of all the
ata points (genes) and it reflects the compactness and separation
f clusters. The value of Silhouette index varies from −1 to 1 and
igher value indicates better clustering result.

Here for each solution in the Archive formed after execution
f GenClustMOO,  Silhouette-index value is computed. In order to
btain the proper partitioning, Silhouette-index value has to be
aximized. Thus the solution of the Archive which corresponds

o the maximum value of Silhouette-index is selected as the best
olution. GenClustMOO with selection of the best solution using
ilhouette-index is denoted as GenClustMOO2.  GenClustMOO with
election of the best solution using the semi-supervised approach
roposed in this paper in Section 3.6 is denoted as GenClustMOO.

Here the final F-measure values are reported for the solutions
dentified by GenClustMOO,  and GenClustMOO2 for all the data
ets used here for experiment in Table 2. Results show that Gen-
lustMOO performs the best for all the cases. This is because
enClustMOO selects that solution which performs best in terms of
inkowski scores for test patterns that constitute 10% of the whole

ata set. Silhouette-index is not able to detect the proper partition-

ng for many data sets. The solution with the optimal partitioning
xists on the final Pareto optimal front. But Silhouette-index value
or that solution is not optimum. Thus GenClustMOO2 fails for most
f these data sets.
 2 (c) Ellip 2 2 and (d) Sph 4 3. Symbols used to denote different clusters: (a) ‘∗’, ‘·’

5.3. Summary of results

Results on a wide variety of data sets show that the proposed
GenClustMOO is able to detect the appropriate number of clusters
and the appropriate partitioning from data sets having many differ-
ent types of clusters. While results on data sets of group 1 and group
2 show that GenClustMOO is capable to identify various symmetri-
cal shaped clusters (hyperspheres, linear, ellipsoidal, ring shaped,
etc.) having overlaps, results on data sets of group 3 show its effec-
tiveness on some well-separated clusters having any shape. Results
on data sets of group 4 also show that GenClustMOO is capable to
detect partitioning from real-life data sets of varying characteris-
tics. The results on nineteen artificial and seven real-life data sets
establish the fact that GenClustMOO is well-suited to detect clusters
of widely varying characteristics. Results show that while MOCK  is
only able to detect well-separated or hyperspherical shaped clus-
ters well, VGAPS is capable of doing so for symmetrical shaped
clusters. The proposed GenClustMOO clustering technique is able to
find out the proper clustering automatically where MOCK succeeds
while VGAPS fails (data sets from Group 3) as well as where VGAPS

succeeds while MOCK fails (data sets of Group 1). In a part of the
experiment, we have also compared the effectiveness of the under-
lying multiobjective optimization techniques, AMOSA and PESA2,
in the proposed clustering algorithm, GenClustMOO.  GenClustPESA2
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Table  3
Computation of the rankings for the four algorithms considered in the study over 26 data sets, based on the F-measure values obtained.

Data set GenClustMOO MOCK VGAPS GenClustPESA2

Sym 5 2 1.00(1) 1.00(1) 1.00(1) 1.00(1)
Sym 3 2 0.967(1) 0.771(4) 0.961(3) 0.963(2)
Ellip 2 2 0.971(2) 0.667(4) 1.00(1) 0.968(3)
Ring  3 2 0.964(1) 0.801(3) 0.961(2) 0.961(2)
Rect  3 2 1.00(1) 1.00(1) 0.736(2) 1.00(1)
Sph  5 2 0.957(1) 0.902(3) 0.541(4) 0.936(2)
Sph  4 3 1.00(1) 1.00(1) 1.00(1) 1.00(1)
Sph 6 2 1.00(1) 1.00(1) 1.00(1) 1.00(1)
Sph 10 2 0.981(1) 0.717(4) 0.752(3) 0.931(2)
Sph 9 2 0.681(2) 0.717(1) 0.481(4) 0.652(3)
Pat1  0.946(1) 0.547(2) 0.418(3) 0.946(1)
Pat2  1.00(1) 0.545(3) 0.582(2) 1.00(1)
Long1 1.00(1) 1.00(1) 0.487(2) 1.00(1)
Sizes5 0.968(1) 0.791(4) 0.816(3) 0.883(2)
Spiral  1.00(1) 0.948(2) 0.373(3) 1.00(1)
Square1 0.999(1) 0.999(1) 0.999(1) 0.999(1)
Square4 0.918(2) 0.895(3) 0.925(1) 0.878(4)
Twenty 1.00(1) 1.00(1) 0.479(3) 0.948(2)
Forty  1.00(1) 1.00(1) 0.095(3) 0.979(2)
Iris 0.788(2) 0.775(3) 0.754(4) 0.926(1)
Cancer 0.969(2) 0.819(4) 0.953(3) 0.979(1)
Newthyroid 0.863(1) 0.739(2) 0.659(4) 0.687(3)
Wine  0.709(2) 0.726(1) 0.617(3) 0.437(4)
LiverDisorder 0.673(2) 0.671(3) 0.705(1) 0.603(4)
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LungCancer 0.802(2) 

Glass  0.494(2) 

average rank 1.346 

lustering technique, utilizing PESA2 as the underlying optimiza-
ion technique in GenClustMOO framework, performs similarly as
enClustMOO clustering technique using AMOSA for data sets with
quisized, equi-density small number of clusters. K-means is able
o detect hyperspherical shaped clusters. Single linkage is able to
etect well-separated clusters.

The improved performance of GenClustMOO can be attributed
o the following facts. Use of multi-center approach for each clus-
er enables it to detect any shaped clusters. The symmetry based
luster validity index captures the total symmetry present in the
btained partitioning. Use of relative neighborhood graph to com-
ute the Con-index enables it to detect any shaped clusters as long
s they are well-separated. AMOSA, the underlying optimization
echnique makes it capable of optimizing three cluster validity
ndices efficiently.

.4. Statistical test

Here we have done some statistical tests guided by [41,42] to
stablish the superiority of the proposed clustering technique, Gen-
lustMOO1. We  have done Friedman statistical test [43] to detect
hether the four clustering techniques, GenClustMOO,  MOCK,
GAPS and GenClustPESA2 used here for experiment perform sim-

larly or not. It assigns ranks to each algorithm for each data set.
t tests whether the measured average ranks are significantly dif-
erent from the mean rank. Friedman test shows that measured
verage ranks and mean rank are different with a p value of 0.0166.
he corresponding table is shown in Table 3. Finally Nemenyi’s test
44] is performed to compare the clustering techniques pairwise.
n each case  ̨ = 0.05. Note that for all the cases the null hypothe-
es (the pairing algorithms perform similarly) are rejected as the
orresponding p values are smaller than the ˛.

. Conclusion
In this paper a new multiobjective (MO) clustering technique
GenClustMOO) is proposed which can automatically partition the
ata into an appropriate number of clusters. Each cluster is divided
(4) 0.741(3) 0.843(1)
(1) 0.534(1) 0.534(1)

2.385 1.846

into several small hyperspherical subclusters and the centers of all
these small sub-clusters are encoded in a string to represent the
whole clustering. For assigning points to different clusters, these
local sub-clusters are considered individually. For the purpose
of objective function evaluation, these sub-clusters are merged
appropriately to form a variable number of global clusters. Three
objective functions, one reflecting the total compactness of the
partitioning based on the Euclidean distance, the other reflect-
ing the total symmetry of the clusters, and the last reflecting
the cluster connectedness, are considered here. These are opti-
mized simultaneously using AMOSA, a newly developed simulated
annealing based multiobjective optimization method, in order to
detect the appropriate number of clusters as well as the appro-
priate partitioning. The performance of the proposed algorithm
named GenClustMOO is compared with the existing multiobjec-
tive clustering technique, MOCK, one single objective clustering
technique, VGAPS, for several data sets having different character-
istics. Results show that the proposed technique is well-suited to
detect the appropriate partitioning from data sets having either
the point symmetric clusters or well-separated clusters. In a part
of the experiment the effectiveness of AMOSA as the underlying
optimization technique in GenClustMOO is also demonstrated in
comparison to another evolutionary MO algorithm, PESA2.

Much further work is needed to investigate the utility of hav-
ing different and many more objectives, and to test the approach
still more extensively. Selecting the best solution(s) from the Pareto
optimal front is an important problem in multiobjective clustering.
Two methods of selecting a single solution from the Pareto opti-
mal  front is proposed here. Some new methods to choose the best
solution from the Pareto optimal front have to be developed.
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