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Abstract

This paper describes GPU based algorithms to compute statsitton model for unmanned surface vehicles
(USVs) using 6 degree of freedom (DOF) dynamics simulatioihgehicle-wave interaction. State transition
model is a key component of Markov Decision Process (MDP)clvis a natural framework to formulate the
problem of trajectory planning under motion uncertaintys\Wtrajectory planning problem is characterized by
the presence of large and somewhat stochastic forces dweam evaves, which can cause significant deviations
in their motion. Feedback controllers are often employedefect disturbances and get back on the desired
trajectory. However, the motion uncertainty can be sigaificand must be considered in the trajectory planning
to avoid collisions with the surrounding obstacles. In aafSeSV missions, state transition probabilities need to
be generated on-board, to compute trajectory plans thahaadle dynamically changing USV parameters and
environment€.g, changing boat inertia tensor due to fuel consumptionatians in damping due to changes in
water density, variations in sea-state, etc.). The 6 DOFdyos simulations reported in this paper are based on
potential flow theory. We also present a model simplificatitgorithm based on temporal coherence and its GPU
implementation to accelerate simulation computationgrerbince. Using the techniques discussed in this paper
we were able to compute state transition probabilities$s taan 10 minutes. Computed transition probabilities
are subsequently used in a stochastic dynamic programraseglapproach to solve the MDP to obtain trajectory
plan. Using this approach, we are able to generate dyndynfealsible trajectories for USVs that exhibit safe
behaviors in high sea-states in the vicinity of static otls

Keywords:
USV, vehicle simulation, fluid-rigid interaction, GP-GPltgjectory planning, MDP, state transition map,
stochastic dynamic programming, motion uncertainty

1. Introduction

USVs operate in ocean environmentwith disturbances causedves, currents, wake of other ships, etc. The
disturbances impart significant uncertainty in vehicletion. Due to the presence of high motion uncertainty,
an action of a USV may not lead to the exact desired motionitkesp using a feedback controller. Vehicle
dynamics and motion uncertainty together make the taskaggdtory planning very challenging, particularly in
highly cluttered environments. Consider Figurewhich shows the influence of vehicle dynamics and motion
uncertainty on the planned trajectories in a USV missioncl€sM, P, andQ denote three consecutive waypoints
of a mission. When the USV reachBsit needs to find the optimum trajectory (with minimum lengtind risk
of collision) betweerP andQ. One way, to solve this problem, would be to find the optimuajetitory, without
explicitly considering the ocean disturbances (shownegsdtoryA). Disturbances may be insignificantin the case
when the sea-state is cal®.g, sea-states 1 to 3) or the USV is heavy enough to get devitkitseha-state is very
rough €.g, sea-state 4 and higher) or the USV is lighter, then the odiedmrbances may not allow the vehicle to
closely follow the intended trajector] as the disturbances may lead to collisions with an obstadenarrow
region. A trajectory, which is safer with respect to the acéisturbances but longer in length is shown in Figure
as trajectonB. It is thus evident that the physics of interaction betwe&Ylnd ocean waves greatly influences
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Figure 1: Trajectory plans for fierent ocean wave disturbance conditions. Trajecfois/shorter but riskier and
may lead to collisions in the event of high sea-state wheBeiadonger but more conservative to minimize the
risk of collision. If sea-state is calne(g, sea-states 1 to 3) or USV is heavy enough so that the distcelsare
insignificant then trajecton should be chosen. If sea-state is rougly( sea-state 4 and higher) or USV is light
then trajectoryB should be chosen.

the choice of trajectory plan. The variations take placeyimasnical parameters of USV-ocean interaction such as
inertia tensor of USV due to fuel loss, damping parameteestdchange in water density, etc. during mission. In
addition to that sea-state changes during the executionssion due to change in weather. Based upon dynamics
based interaction between USV and ocean waves and charggirgjate, a suitable trajectory, which is safe and
still not overly conservative amonyandB, needs to be planned.

Above outlined physics-aware trajectory planning probianmighly uncertain ocean environments can be
solved by combining MDP1], 2, 3] framework and a dynamically feasible motion primitive bdsstate space
representatiord, 5]. MDP is a natural framework to formulate the problem ofeépry planning under motion
uncertainties], 3]. The use of motion primitives in MDP based framework, thallkgws generating trajectories
that explicitly consider the constraints imposed by theisletdynamics. This is unlike planning on a rectangular
grid that might yield a dynamically infeasible trajectorin this paper we incorporate vehicle dynamics and
motion uncertainty into motion-primitives using Monte @aruns of high-fidelity 6 DOF dynamics simulation
of interaction between USV and ocean waves. We represetrtanty in motion primitives by using a state
transition function. This function maps each possiblerdiszed state of the vehicle and a given action to a list of
possible resulting states with respective transition ghbilies.

State transition function can be obtained, by either rugfieid experiments or by using computer simulations.
Performing field experiments is the most accurate methadistexpensive and may be infeasible when needed
to be performed during a mission. Moreover, the number oggrents may be very large when multiple sea-
states and vehicle dynamics parameters need to be takeadobdwnt, which is the case during long missions.
Computer simulations are inexpensive and can be improyeidcorporating experimental data. The complexity
of a mission and an environment require generating the statsition map on-line, based on the information
gathered by the sensors during vehicle operation. It mapfeasible to run all possible simulation-tine (i.e.
before the mission) to generate the state transition maig.ig hecause, the sea-state is decided by several factors,
namely, the amplitudes, frequencies, wave directions,thadvave numbers of the wave components forming
the ocean waveg] 7]. Each of these factors is continuous and has non-linearenfle on the ocean wave. In
addition to this, the ocean interacts with USVs in a nondinfashion. The initial conditions for the simulations
can thus, become combinatorially prohibiting for dftllme estimation of state transition map. A potential flow
theory based high fidelity 6 DOF dynamics simulator can gateea fairly accurate state transition map and aid
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in generating both safe and low cost trajectori&s9 10]. The major problem with using such a high fidelity
simulator is the slow computational performance of the $&tmen. This is mainly because of the fluid to rigid
body interaction computation. One way to accelerate thepetations is by using parallelization. Performing
parallel computations would require computing clusterbeoplaced on the base and communicating with the
vehicle over a network, which might be generally unreliatle to possible communication disturbances. The
alternative of placing clusters directly on-board mighd &olthe weight of the payload, which may not be desired
or generally not possible. Another way to perform on-boamhputing is by using GPU. Recently, expensive
scientific computations in various robotics problems andgomed using GPUs, which are very powerful and
lightweight as well 11, 12, 13, 14]. In addition to using GPU computing, we also employ modeiification
techniques 9] to further improve computational performance of the siation. A faster computation of state
transition map may be required for some parts of the missidigre computing speed-up available using GPU
alone may not be enough. The accelerated dynamics sinmiatthen used to establish connectivity among the
vehicle’s discretized states to develop a state trangitiap represented using a connectivity graph. The trajectory
planning problem is then solved using value iteration ofsteehastic dynamic programming (SDR).[

The key contributions of this paper are: (1) incorporatié® ®OF dynamics simulation in state transition
map estimation, (2) use of GPU based parallelization schémmake the simulation faster for on-line computa-
tion of state transition map, (3) incorporation of tempamtherence based model simplification techniques with
GPU acceleration for computing state transition map evstefaand (4) solution of trajectory planning problem
using developed state transition map data structure, $arteacomputed trajectory plan satisfies the dynamics
constraints as well as handles motion uncertainties.

2. Literature Review

In this paper we focus on the following issues related t@ttajry planning problem of the USVs under motion
uncertainty, namely, (i) simulation of the USVs, and (iiyglts-aware trajectory planning algorithm. We assume
that the state of the vehicle can be estimated perfectly &itrads. We discuss the related work in both the areas
in this section.

2.1. Fluid-Rigid Body Interaction Simulation

Fluid-rigid body interaction simulations are computatiiym expensive because of the coupling between the
fluid flow and the rigid body motion namely (1) influence of ddiody motion on the flow of fluid in which it
moves, and (2) the influence of the fluid motion on the rigidyowabtion. Simulation approach in which both the
couplings are considered explicitly in each time step alled&wvo-way coupling solution; whereas, if one of the
couplings is replaced with some faster model then it is dadiee-way coupling solution. In this section we shall
review some common representative techniques for fluid-idgdy interaction simulation. Two-way coupling
based approaches not necessarily developed for vehicleaaaoh interaction simulation are: Euler's momentum
equation, Navier-Stokes law, Smoothed Particle Hydrodyina(SPH) technique, and Lattice Boltzmann Method
(LBM). In Euler's momentum equation based technique, thenemtum equation is solved for fluids numerically.
Batty et al. reported a computation time of 25 s per frame using a gridafis® x 90 [15]. Carlsonet al. reported
numerical solution of Navier-Stokes equations with corafiah time of 275 s per frame for a domain of size
64 x 64 [16]. In SPH technique, the fluid is assumed as a collection dfghes and the motion of fluid particles
and their &ects on a floating rigid body is modeled based on a kernel immeteighted by the distance of the
particle from the floating rigid body. Becket al. reported a computation time of4¥ s per simulation step for
simulating fluid with 850000 particled7]. In LBM, fluid flow is represented as motion of fluid particleghere
each particle follows a velocity distribution function amebves in discrete time steps and can collide with other
particles (which behave in the same way). The collisiongale such that the statistical particle motion (or fluid
flow) obtained is consistent with the continuity conditiorGarciaet al. developed LBM based fluid-structure
interaction approacHlLB]. Geistet al. developed a real-time approach for wave surface generatidrattained
25 Hz for grid of size 1024[19]. Geveleret al. developed LBM based approach for simulating laminar flow
with free fluid surface on multi-core CPU and many-core GPtktpssors and reported a factor of 8 speed-up on
GPU code with respect to multi-threaded CPU ca2fgl.[ Gladkovet al. reported direct simulation Monte Carlo
(DSMC) for solving Boltzmann equations on per particle bgsd solve rarefied fluid flow problems) by using
GPU to obtain speed-up by a factor of 65 over serial impleatent.

A survey on boat simulation was reported by Beck and R2&[d Craigheackt al. reported another recent sur-
vey on open source boat simulata2g]. Some of the key USV simulation techniques are RANS basgthigques,
strip theory based techniques, kinematic model based igpobs, and potential flow theory based techniques. In
recent years, RANS based techniques for fluid flow aroundsfoasimulating boat motion are becoming popular
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because of their accuracy in the problems involving bountdgser dfects, turbulence, waketc, [23]. Kim [24]
reported computation time of 24 hours using 84 processokgauns IBM-SP3 computer for 360 simulation time
steps. Some of the other implementations of RANS code canualfin 25, 26, 27]. There are many research
papers reported in the area of the underactuated contdelggn for the USVs that utilize 3 DOF simplified mod-
els which neglect the rolling, pitching, and heaving masif28, 29, 30, 31, 32, 33]. Strip theory is mainly used
for slowly moving slender geometrie34, 35, 36]. In potential flow theory, fluid flow is assumed to be irrotetal
and inviscid B7]. Potential flow theory based techniques are used by sexagehrchers to perform the motion
simulation of USVs §, 9, 10]. Thakur and Gupta reported real time computational peréorce of USV simula-
tion using clustering, temporal coherence, and multi-parllelization based model simplification techniques in
potential flow theory based simulation framewo®k [

In nutshell:

e Euler’s equation, Navier-Stokes, and RANS equation basgthiques yield highly accurate results but one
of their limitations is the dependence of the computatiaretion the domain size and the slow speed of
computation.

e SPH technique results into good quality animations but tbelpm with the approach is the requirement of
a large number of particles to simulate the fluid which in tinereases the computational time.

e The 3 DOF simulations are computationally very fast siney theglect the fect of fluid flow on the roll,
pitch, and yaw and as a result are not accurate enough.

e Strip theory based techniques are computationally verybigisare not suitable for taking into account the
variations in hull geometry and wave interactions. Thisesduse, in strip theory, the hull geometry is
approximated to the nearest ideal shape (such as ellipssptieres, etc.). This idealization might yield
significant errors in hydrodynamic and hydrostatic fordamestions.

e The accuracy obtained by the potential flow based technigeat as good as RANS but are computation-
ally faster and much easily amenable to the 6 DOF computatiod hence, much accurate compared to the
simplified 3 DOF models. We thus, use potential flow theoryedasodel in this paper.

2.2. Physics-Aware Trajectory Planning

There is a large body of literaturé][in robot motion planning and we are presenting here onlywave of
representative research papers. We shall mainly focusseareh related to robot trajectory planning considering
differential constraints or in other words physics-aware ratagéctory planning. The literature for trajectory
planning under dferential constraints falls into following categori&8] namely, (1) state space sampling based
trajectory planning, (2) decoupled trajectory planningwninimum distance path, (3) finite-state motion model
or the maneuver automaton (MA), (4) mathematical programgmand (5) model predictive control (MPC). In
state space sampling techniques, the robot state spaseristdied and then searched for the low cost collision free
trajectory. Several schemes for state space discretizhtioe been reported. In a simple grid based approach, the
state space is discretized into regular cells and trajg&d@earched in that spac®q. In navigation function based
approach, a navigation function is defined over the distedtstate space and determined using algorithms such as
value iteration followed by determination of a trajectolryterpolation is used40] to make the planning domain
continuous. In rapidly exploring random trees (RRT), a éihstochastic search is performed in configuration
space to generate a search trég §2, 43]. In decoupled approach, planning is executed in two phasethe
first phase, a discrete path or set of waypoid# [s determined using graph search technique such ag34fg]
on a discretized representation of the state space by @irgidonly kinematic constraints of the robot. In the
second phase, dynamically feasible trajectory is detezthiry solving two-point boundary value problem between
consecutive waypoints using gradient based optimizatgma@aches. Suzulat al. used A* based approach for
waypoint generation and RTABU search based optimizatipnagzeh for trajectory generatioAf]. Scherelet al.
reported an evidence grid with a Laplacian-based potamgghod for path planning, an obstacle avoidance based
on reactive planning, and velocity controller for trajaggtgeneration47]. In MA, the action space is discretized
into action automatons to reduce the search from infiniteedsional space to finite dimensional. Frazzili
al. presents rigorous definition of MA iMdB]. Some other related works can be found in Ref.4p, 50]. In
mathematical programming approach, trajectory plannioflem is posed as a numerical optimization problem
with the robot dynamics as constraints and solved usingniqals such as mixed integer linear programming,
nonlinear programming, and other constrained optimizatechniquesgl, 52, 53, 54]. In model predictive
control, the trajectory planning problem is posed againrag@imization problem, but optimized over finite
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horizon. This way the solution obtained is suboptimal bietalesser computation time than optimizing over
infinite horizon B5, 56, 57].

Under motion uncertainty, MDP framework is used to expréssttajectory planning problem and solved
using dynamic programming (DP) algorithn&8[. However, since the state space of a planning problem under
motion uncertainty is usually very large, most of the pradtalgorithms have been developé&®,[60, 61] to
compute an optimal or close-to-optimal solution to the peobby running value iteration over a carefully chosen
subset of the state space.

In the USV trajectory planning domain a three layered aechitre for Dijkstra algorithm based global plan-
ning and A* based local planning is presented by Casadirad. [62]. They used a simple kinematic model with
no environmental disturbances. Benjaretral. developed a technique for collision avoidance and nawgaif
the marine vehicles respecting the rules of the ro&8p [Soltanet al. developed nonlinear sliding mode con-
trol based trajectory planner for a 3 DOF dynamics mo@d].[ Xu et al. reported a receding horizon control
based trajectory replanning approach where the global iplaetermined using predetermined level sets from
experimental runsgb]. Autonomous guidance based on feedback control is degdlbp Sandleet al. [66].

In nutshell:

e Most of the trajectory planning algorithms described abassume deterministic environmental conditions
or conservatively approximated uncertainties. A congemyapproximation of motion uncertainty due to
environmental disturbances interacting with vehicle dayita might lead to sub-optimal plans.

e In order to incorporate motion uncertainty into the trapegtplanning problem, MDP based framework
is often used. State transition probability encodes thecleldynamics and environmental disturbance
information into MDP formulation.

e In order to do physics-aware trajectory planning, one waipntorporate the physics information into the
problem formulation is to use Maneuver Automatons or mogigmitives and employ simulations to esti-
mate state transition probabilities.

One of the challenges in incorporating simulation basei $tansition map is slower computational speed.
Dynamics simulation based state transition map estimasi@omputationally slow due to the fluid-rigid body
interaction computations. This can be alleviated usingehsidhplification techniques. In this paper, we focus on
trajectory planning based on the Maneuver Automaton framnkefvom which we use only maneuvers, not trims,
similar to the lattice based planning in Re#].[ We extend this framework to consider the motion uncetyain
due to ocean waves using MDP framework. A similar approaclkréjectory planning algorithm for unmanned
balloons under the influence of stochastic winds (by estigatansition probabilities) have been developed by
Wolf et al. [67].

3. Problem Statement and Solution Approach

3.1. Problem Statement
Given,

(i.) afinite non-empty state spae
(ii.) afinite non-empty action spac#x) for each state € X,

(iii.) a dynamics motion modet = f(x, u,w) of the USV, wherav is a nondeterministic noise term and fluid
flow is based on potential flow theory,

(iv.) goal statexs, and

(v.) obstacle mag such that,

Q(X) 1, if x lies on obstacle

0, if xis on free space

compute following:
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Figure 2: Description of coordinate systems used in thegmtesl model: Inertial and body coordinate systems
are shown.

(i.) State transition map oveX andu: The state transition map should represent the motion taingr ex-
hibited by the given motion model under each given action in the form of associated probability of
transition for the corresponding state transition prolitgbp(Xx, U), VX, Xi € X, andu; € u. Perform
GPU based computing acceleration and develop model siogildn techniques for on-line estimation of
state transition map.

(ii.) Trajectory plan: Using the state transition map coneglin step (i), determine trajectory plan to generate
dynamically feasible trajectory in each planning cycledaah target locationg from any given starting
location of the USV. The computed trajectory plan ensurasttie generated trajectory is updated in every
planning cycle to recover from the pose errors introducesltduthe influence of the ocean environment.
This kind of trajectory plan is also referred tofagdback plaimn Chapter 8 of Ref.]]. We assume perfect
state information is available at all times.

3.2. Approach
The approach is enumerated in the following steps.

(i.) Enhance the given USV motion model to suit the requiretsidor GPU implementation. Implement the
motion model on GPU and develop simplification algorithmerable faster simulation.

(ii.) Model the trajectory planning problem as MDP by regna$ng state-action space in a lattice data structure
and compute the state transition map for the discretizeédraspace.

(iii.) Apply value iteration of stochastic dynamic prograrimg to determine the trajectory plan. The generated
trajectory plan enables the USV to find the optimal trajecfosm each discretized statec X.

In the following sections, we discuss the above steps inldeta

4. Dynamics Simulation of USVs

In this section we present the governing equations of théemented dynamics moded]] We extend the
equations to handle the arbitrary number of wave comporaentso incorporate uncertainty into the system.

4.1. Motion Equations: Interaction Between USVs and Oceaved/

We implemented the 6 DOF dynamics model for vehicles giverrogsen T]. In this model, a vehicle is
assumed to be a rigid body. The coordinate system used in didelis shown in Figur@. The origin of the
inertial frame of reference is set at the nominal water lenigh the Z-axis being vertical and pointing upwards.
The body coordinate system for representing the hull gegnaetd the velocity directions of the USV is attached
to boat’s center of gravity (CG).

The governing dynamics equation of boat’s motion in oceavew#s given in Equatiofh.

MuV + Cy(V)V + Du(V)v+g(p) = Fe + Fp

b= Jp(v) @



where,
P = [X Y,z 0y 6,6, is pose vector expressed in the inertial framey[Z]" is the Cartesian position vector
in mandé's are Euler angles about subscript axesd,

V = [Vy, Wy, Vo, @y, @y, a,]" is velocity vector expressed in the body frame relative ®ittertial framey; =
Vy, W, V5] T is linear velocity inms ™t andv; = [ay, @y, @;]"'s is angular velocity irrads?,
y y

CyC; Sx§Cz — Cx& CxSyCz + Sx&
R=1|¢s SxSyS; + CxCz CxSyS; — SxC; | is rotation matrix rotating a vector expressed in the
- ScCy CxCy
body frame to the inertial frame, means co8,,
—| R 03 i 3acobian matrix,
O3z Jr
1 Sty Cxty
\]r = 0 Cx —Sx y
Y &
0 ¢ &
0 —X3 X2
XxX=S(X)=| X3 0 —x; [|is matrix dual (for cross product) of vect&r= [X1, Xo, X3] T,
X2 X 0

Pc.s IS vector representing the position of CG in the body framestérence,
mis mass of the USV kg,

Ip is 3x 3 matrix representing the inertia tensor of the US\Kgm¥,

Mgg = mng(lg?;?g) _msi(pr’B) is matrix representing inertia tensor of the USV,
Ma is (6 x 6) diagonal matrix representing the added mass of the USV,
Ma1z = 0.1m
Ma2o = 4.7508°
Mazs = 4.750a°
Maa4 = 4.7508°
0.1m

Mass = 0.3960a%L2 + 0.0833-— L3
X

0.1m
Mags = 0.0833-—Lj + 0.396pa’L;
X

wherep is density of water irkgnT3, Ly, Ly, andL, are length, width and height of the bounding box of the
hull in mrespectively,

My = Mg+ Ma is (6 x 6) matrix representing the total inertia,

Crg = [ MS(V)axs ~mS(vi)S(Pe.e) is Coriolis and centripetal matrix,

mS(Vr)S(pc.s) =S(lpwr)
O3x3 -S(Ma 11Vt + Ma12Vr) | - . )
Ca = ’ ’ is matrix representing theffect of added
A [ =S(Ma 11Vt + Ma 12Vr) —S(Ma21Vt + Ma22Vr) P g

mass,
Majj representsi( j) sub-matrix ofMa of size 3x 3,
Ch = Crg + Ca is 6 x 6 matrix representing the totaffect of Coriolis and added mass term,

Dy is 6 x 6 damping matrix,



g(p) is 6x 1 vector representing the restoring force expressed indbg frame inN,
Fe is 6x 1 vector representing the environment force vector expregsthe body frame i,

Fw is 6 1 vector representing the ocean wave and the vehicle itiendforce expressed in the body frame
in N, and

mis mass of boat ikg,
Fp is 6x 1 actuation force vector expressed in the body fram.in

The fluid flow is computed based on potential flow the®%] [ Based on potential flow theory, the ocean wave

is represented using a spatio-temporally varying height fi;composed of) wave components and given by the
following equation.

Q
n(x,y,t) = Z Aj cosk;jxcosy,j + Kjysinby,; — wjt + yrj)+ @)
=1
0.5A%k; COS(;jXCOSOw, | + 2K}y SiNBu, j — 2wit + 2¢))
where,

Aj, wj, kj, 6y, are the amplitude, frequency, wave number, and wave directispectively foj!" wave com-
ponent, and

¥ € [0, 27) uniformly random phase lag term.
The velocity potentiap is computed using the following equation.

& gA , :
¢ = Z o expk;2) sin(Kjx cosby,j + Kysinby,j — wit + ;) (3)
=1

Velocity potential is then used to compute force acting oV\d8e to ocean wave using following equation.

A 9@5 |% +0.5V¢.Vg|dS @)

W = =
P&, |5 +0.5V¢.V¢|(Fx dS)

whereSg is instantaneous wet region of the USV. We assume that fatiegeon boat is only due to ocean

waves Fg = Fyw) and ignore forces due to currents, wakes, etc. Howeveengivsuitable model, simulation
framework is capable of taking other types of forces intooaicd.

The termFp on the right hand side of Equatidnis the force due to the actuation (the thrust and the rudder

angle). There are many actuator models available for thed 8\ can be plugged into Equatibr7, 8. We
used a model given in Equatidn

-
Fe = [Ka Il Nprop Il Nprop, 0, 0, 0, 0Kz % K1 [l Nprop Il Npropthua (5)
whereK; is a constant and we chose it to be 100§, is the propeller’s rpmks is a constant and we chose it to
be 10, and,q is the rudder angle.
We can express the parametric forbh ¢f the 6 DOF model as follows:

x = f(x,u) (6)
wherex = [ p" vT]T is the state of the USV,

u= [vf @]T is the commanded control action to go with forward velocitypat a heading angle @, and

f = [(MA(-CuWv - Du(WV - o(p) + Fe + Fe)T Jp07] .

We specify the desired control action using the desireddodwelocity and the heading angle. Any other kind
of desired control actions such as the desired angular iaelem also be chosen based on the available actuation
models. For the purpose of this paper we assume that the U8\¢satrollable using the control actions specified
by v and®.

The thrusinpop and the rudder anglg,q can be computed using PID controller.

We chose PID controller because of its widespread use arelafamplementation, however, in order to
execute the commanded control actions any other contallgr as the backsteppingd, sliding mode, etc. can
be used?28].
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Figure 3: Uncertainty in USV’s motion model for action aloXgxis generated using sample size of 256 (com-
puted for sea-state 4 with average ocean wave heighBofdnd boat moving at the velocity oh@s?).

4.2. Uncertainty in the Motion Model

In Sectiond.1, the ocean wave (the ocean wave height and the velocity field)nitialized using given wave
amplitudes, frequencies, and directions. An ocean waweg onitialized evolves deterministically with time and
can be predicted exactly using the solution of Laplace egugsee Equatiol) [37]. However, the ocean waves
initialized with the same parameters might looKelient due to the presence of the uniformly random phase lags
¥ between each wave component. This leads to prediction giitsli different trajectories in each simulation
run of the USVs operating under the ocean waves with exaidigtical ocean wave parameters (initialized with
uniform random phase lags) and an action. Tliisat is shown in Figur&(a), in which the USV is acted upon
by a PID controller to move along a straight line for 25@elient simulation runs in ocean wave built up of
identical wave components. The variation in the trajee®of the USV in each simulation run is due to the
uncertainty introduced by random phase lags (see Equ2lionthe ocean wave components despite of the other
ocean parameters and the PID control objective being exaethtical. Figure3(b) shows the histogram of final
positions reached by the USV when commanded to reach 22)86th an orientation of ®due to the disturbances
caused by the ocean waves. Fig8(e) shows the variation in the final orientation while the comaehaction
was @. It should be noted that the variation in the ending pose & afrthe main cause of randomness in the
motion model, which accumulates over the trajectory.

Formally, we can express the parametric form of the dynamimsel (with uniformly random initial phase lag
parameters) as follows:

X = (X u,w) @)

wherew is the noise introduced due to the uniform random phasegags
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Figure 4: Implementation of USV simulator on GPU.

4.3. Simulator Implementation on GPU

As described in Sectio#.2, and shown in Figur&, the USV ends up in dierent poses for exactly identical
action objective and initial states forftrent phase lag initializations. This means that fdlisiently large num-
ber of simulation runs with uniform phase lag initializatfor a given set of initial conditions and action goal,
the distribution of final states will represent the influen€¢he ocean on the USV’s motion. In this section, we
describe Monte Carlo simulation based approach to estithat@fluence of nondeterministiéfects of ocean on
USV'’s motion for a given set of action goals. The Monte Cadmpling based approach requires running numer-
ous dynamics simulations with uniformly random initial glbedags among wave components and hence, real-time
performance of the simulator may not be enougjh We describe the enhancements made in the potential flow
theory based simulation modd, [9, 10] for suitability of implementation on GPU.

We define state vector tup}e= (X, X, .., Xw), wherex, = [v] x']" is state vector ok™ simulation run andv!
is the number of Monte Carlo simulation runs.

LetU = (ug, Uy, ..., Uy) be the action vector tuple with each element as a vectoifgpegaction for corre-
sponding simulation run. We denote action set for the estiraple using the tupl® = (U, Uo, ..., Up) where
U;’'s are action vector tuples aritlis the number of action goals.

Also, letW = (wy, Wa, ..., W) be the phase lag vector tuple whevie = [y, Yok, .- okl " is the phase lag
vector fork!™ simulation run angq is phase lag ofi wave component d&" simulation run.

Thus, the augmented dynamics equation can be written byrgletieg Equatior/ for M Monte Carlo simu-
lation runs as follows:

X = F(X, U, W) (8)

where,F is the modified dynamics function representing simultaesinnulation runs.

Let Fwr = (Fyy3 Fygs - Fyyw) be the ocean wave force tuple whéfigy is ocean wave force vector figd"
simulation run.

The computation steps of the simulation are enumerateavigke Figuret).
Algorithm 1 - GPU based Monte Carlo Simulation of USV’s dynamics
Input

(a.) Initial state vector tuple of US¥o,
(b.) number of Monte Carlo rund,

(c.) desired target state vector tuple

(d.) desired trajectory length

(e.) radius of acceptance

(f.) number of ocean wave componels
(g.) time step sizat,

(h.) action sefr,
11



(i.) polygonal geometry of USV, and

(j.) sets of amplitudes, frequenciesuq, directionsdy corresponding to each wave component, where imdex
varies from 0 taQ — 1,

Output Set ofM trajectories
Steps

(i.) Initialize the state vector tuple of USX = Xo, phase lag tupl®V, timet = 0, and trajectory length vector
L = [0,0,...,0]". Copy all configuration variables such as ocean wave pasmetynamics parameters
and geometry parameters to constant memory cache of GPlatsgata is not required to be transferred in
each simulation time step.

(ii.) Transform the USV geometry thl states represented By Each transformation is performed by separate
GPU thread. In this case, same instruction of transformateeds to operate dviN similar data, wheré\
is the number of polygonal facets representing the USV'stgetny. We perform computations of this step
on GPU.

(iii.) Determine the instantaneous wet surfacgg j) of the USV by finding out the facets lying beneath and on
the wave surface (computed by superimposing gi®emcean wave components using Equat®ditorre-
sponding toj'" phase lag vectow; and use Equatios to compute the wave force tupfayr. In this case
computation of intersection of each polygonal facet witkstamtaneous ocean wave and force computation
is performed by separate GPU threads. The number of indepéngerations required is agaitiN. We
perform computations of this step on GPU.

(iv.) Determine the required control force vector tupleresponding to the action s¥tusing Equatiorb.

(v.) Determine the Coriolis matri€y(v) and the damping matrig(v) corresponding to each Monte Carlo
simulation run. The number of independent operations redun this step iM. We perform computations
of this step on GPU.

(vi.) Use Euler integration to solve Equati@by using the wave force tuple, Coriolis matrix, and damping
matrix. Update time to t+At. The number of operations needed in this stdyd idVe perform computations
of this step on GPU.

(vii.) Find Euclidean distancaX between state tuple obtained from step (vi) ahand update trajectory length
vectorL with L + AX. Compare each element bfwith the desired trajectory length The Monte Carlo
runs, for which trajectory length exceeds the set trajgdemgthl, do not update corresponding elements
of X whereas for other runs update the elemend$ with the solution found in step (vi). Since this is a step
with logical branching we perform it on CPU.

(viii.) If trajectory lengths for all the runs exceetl®r all simulated instances of USV are within the radius of
acceptance from the respective target positions then rethfitrajectories else go to step (ii).

4.4. Simulation Results of GPU Based Parallelization

We used NVIDIA's CUDA software development kit version 3.2wMicrosoft Visual Studio 2008 software
development platform on Microsoft Windows 7 operating systfor the implementation of Algorithm 1. The
graphics hardware used was NVIDIA GeForce GT 540M mounte@®elh XPS with Intel(R) Core(TM) i7-
2620M CPU with 2.7GHz speed and 4GB RAM. We chose the numbelUA threads per block to be 256 for
each kernel function. For the CUDA kernel function neededdok on J data members, we chose the number
of computing blocks to b&M=1. The number of triangular facets in the USV model used in timeilgtions
was 11158 and the bounding box dimensions of the model was4l2 4 m. We chose ocean wave composed
of Q = 20 components with 6 components having amplitude.f® while rest 14 with amplitude of. D m. 16
of the ocean wave component had frequency of 1 Hz while fotlmerh had frequency of 2 Hz, and the direction
6's were evenly distributed in the range 0 te dd . We chose simulation time step of size&d® s and ran
the simulation for 200 time steps for 256 random phase ld@iiziations. Tablel shows the comparison of the
computational performance on GPU as compared to the CPUd lsaseputation. OpenMP based multi-threading
enabled 85% average CPU usage, while running the basefimdagions. GPU based approach resulted into
speed-up by factor ranging from83to 140, for the presented test case. Tablalso shows that the speed-up
factor increases with increase in the number of Monte Canhs,rbecause of the highly data parallel nature of
the computations. For larger number of simulation runsctist of memory transfer is appropriated and hence,
speed-up is larger compared to smaller number of runs.
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Table 1: Comparison of the computation gain due to GPU oweb#seline computations performed on CPU

M Baseline | GPU Speed-up

computa- | Computa-

tion time | tion time

on CPU| (s)

(s)
1 13.7 3.6 3.8
2 27.1 5.3 5.2
4 54.2 8.0 6.8
8 107.4 13.0 8.3
16 | 214.4 22.0 9.8
32 | 425.6 36.9 115
64 | 846.6 65.4 12.9
128 | 1691.2 123.8 13.7
256 | 3386.3 241.9 14.0

4.5. Model Simplification on GPU

More than 99% of the computation time in the USV simulatiosgent in computing the forces acting on the
USV due to the ocean waved]| The ocean is represented as a spatio-temporally vangightfield in this paper.
One of the major factors influencing wave forces is the vianain the wave heightfield in addition to the fluid
velocity around the USV. The ocean wave heightfield does hahge significantly with each simulation time
step. For example, for a simulation time step of leng@bG, the possibility of ocean wave heightfield around the
USV changing significantly is very low. In such a situationgacan utilize the force computed in the previous
time step in the current time step of the simulation to saveescomputationalféort. This is the underlying idea
behind temporal coherence. In order to explain the ideamopteral coherence in a more concrete way, we define
instantaneous ocean heightfielddheightfield distance vectas follows.

Definition 1 Let the ocean wave be specified @ycomponents of given amplitudes, frequencies, and direc-
tions. Let state vector tupl¢ denote the instantaneous states of the USV for each Monte €latulation runB;
be the bounding boxes of the USV located at the poses givefidnd rectangleRg ; be the projections oB; on
the XY plane. LetA; denote uniform grid of sizenx nonRg ;.

We define instantaneous ocean wave height-@ess a Q x mn) sized matrixG, such that the rows d@& are
the vectors made up of ordered elevations of the ocean wakie @ingrid points onA .

Definition 2 For a pair of ocean wave height-fiel@s andG,, we define théheightfield distance vectcfrd
betweerG; andG; as the following row-wise second order norm.

ha = G} — Gajll 9)

whereGyj is the j" row of Gy, and indexj denotes Monte Carlo run from 1 id.

The force need not be computed in a simulation time stepeibttean wave heightfield distance around the
USV from the previous simulation time step is not significafihe temporal coherence test is performed as an
additional operation in step (ii) of Algorithm 1 (describadSection4.3). If it is found that the ocean wave
heightfield distance corresponding to at least one MontéoGan has changed significantly then step (iii) of
Algorithm 1 is performed, else step (iii) is skipped and gfepis directly executed. By this, the execution of step
(i) in Algorithm 1 is avoided some times, which introducgsme simplification error, but reduces computation
time.

The steps for performing temporal coherence based modplitation on the GPU are described below.

Algorithm 2 - Temporal coherence based Model Simplification
Input

(a.) State vector tupl¥,

(b.) number of Monte Carlo rund,

(c.) number of rowsr()) and columnsif) of grid,
(d.) simulation time and time step sizat,

(e.) threshold for heightfield, and
13



(f.) thresholddr for differential of heightfield.

Output Decision about whether to perform force computation in thet time step or reuse force computed
in the earlier time step
Steps

(i.) If t = O return decision to perform force computation.

(ii.) If t = At then initialize heightfields, and diterential heightfieldiG, to a null matrix of sizeM x mnand
store in global memory.

(ii.) Compute ocean wave heightfieBlat timet and then compute fierential heightfieldisc = G — Gp.
(iii.) Compute heightfield distand® vector betweel® andGp.
(iv.) Compute diferential heightfield distanadhy betweerdG anddGp.

(v.) If all the elements oﬁd are less tham and if all the elements affiy are less thadr, return the decision to
reuse the previous value of force else updage= G anddG, = dG and return the decision to recompute
force.

4.6. Results of Model Simplification on GPU

We chosem = 2, n = 5, M = 256, anddr = 0.1, and performed the simulations under identical ocean and
USV dynamics parameter settings and variidom 0.00 to Q10 in the increments of.025. The computation
speed-up factor over the GPU baseline computation timerfwhe 0.00) varies from 104 to 361 depending
on the set threshold as shown in Figur&(a) The mean square error in force computation introduced due t
increasing threshold is shown in Figuré(b). The temporal coherence based simplification introducessin
the computation of the final pose of the USV in Monte Carlo ritigure5(c) shows the variation in the Euclidean
distance of final positions of USV from the nominal positiardahe diterence of each final USV orientations
from the nominal orientation obtained by the Monte Carlowdation runs. The nominal pose is the commanded
pose to which USV should reach if there are no disturbancethd test case, the nominal position is,@pand
the nominal orientation is Bad. The variation in distance and orientatiorffdience increases with increasing
threshold. This is because, greater the threshold, fewmabeuof times force is computed and hence, more will
be the inaccuracy.

We chose fixed randomization of the ocean wave for evalu#tiaglots, in order to prevent the influence of
randomization on the computing time and the variation ofibse errors.

It should be noted in Figurg, that the computing gains increase slowly in the range®< 0.025, because,
for smaller threshold, algorithm is unable to reuse fordaesmcomputed in the previous steps and owing to the
same reason, the variation in the final pose and nominal gosleé comparatively less pronounced. For larger
values of threshold > 0.075, the variation in the distance and orientation increaaeidly. It can thus be
concluded that can be varied in the window of. @25 < t < 0.075, for obtaining computational gain at the
expense of acceptable errors.

Figure6 compares the computational gains obtained using tempoharence on the GPU and CPU based
simplification B] approaches with the baseline computed on CPU (see Tgbl&he main observations and
respective analysis from the Figusare explained below.

(i.) The computational speed-up factor obtained using tmadroherence on GPU is in the range of tb 431
and increases with the number of Monte Carlo runs. The iser@athe speed-up can be attributed to the
fact that the main computational cost of GPU operationsagitita transfer between GPU and CPU. In the
USV simulation, the data of state variables and the systetrnigaa need to be transferred from GPU to
CPU which is a constant time operation. When the number of isifess, the appropriated compute time
is larger whereas for large number of Monte Carlo runs théafamemory transfer reduces and hence, the
speed-up factor increases.

(ii.) The computational speed-up factor due to temporakcehce over GPU baseline ranges fro@tb 31.

(iii.) The error associated with the model simplificatiorrfipemed on GPU and CPU is computed by taking the
mean squared percentage error between the time seriesatfitiputed forces using the simplified method
and the baseline methof][ The model simplification based on temporal coherenceémphted on GPU
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Figure 6: Results of GPU acceleration.

led to an error of D4% for the threshold = 0.075 anddr = 0.1. Also, the figure shows variation of
computational speed-up using model simplification al¢on based on clustering and temporal coherence
on CPU P for simplification parameter§ = 60,7 = 0.070, anddr = 0.1. The approximation parameters
C, 7, anddr are chosen such that the errors due to GPU and CPU basedfwiatioln is similar, for fair
comparison of associated speed-up in each case. Modelfstapbn performed on CPU lead to an average
factor of speed-up of.8 and average force error 0f26% over the CPU baseline. It can be seen in Figure
that for single run the CPU based simplification approacpediorms the purely GPU based approach by
a factor of 15 and for two runs the CPU based simplification approach ieeb#tan purely GPU based
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approach by a factor of.1. Again the reason is the appropriation of computing timenspn the constant
time data transfer operations over larger number of runss thus evident that using purely GPU based
approach may not be enough in applications in which a sin@¥ Weeds to be run in a VE, as model
can become more complex, stretching the GPU to its limitaplplications, where some error is tolerable,
model simplification can significantly speed-up the appiacaat the cost of small errors.

(iv.) Forlarger number of runs, which are pertinent to aggtibns such as transition probability estimation, GPU
based approach gives very high speed-up factor (in casgyofd®, about 431 with average mean square
force error of 104%).

(v.) Figure6 also shows that the computing speed-up due to temporal @oter gradually saturates as the
number of simultaneous runs increases. The reason is thgtosibility of many heighfields being less
than the threshold simultaneously reduces as the numbeigtitfields increase.

5. Application of Generated State Transition Map in Trajectory Planning of USVs

In this section we present the application of state traositirobabilities obtained from model simplification
techniques, developed in Sectidin the area of trajectory planning of USVs.

5.1. MDP Formulation

In this section we present the MDP formulation for the trigeg planning problem and the algorithms to
compute various components of the MDP.

5.1.1. State-Action Space Representation
For the dynamics computations, the state of the USV is defisemh augmented vector of pose and velocity
according to Equatioidi. The sizes of the vectors representing pose and velocitg asech, making the size of
the state vector as 12. In addition, the USV state-actionesfgacontinuous and it is veryfidcult to search an
optimal policy, in such a high dimensional and continuowscsp In this section we present the state-action space
dimension reduction and a suitable discretization to plosgtoblem of trajectory planning of USVs as a MDP.
The motion goals for the USVs are usually specified in ternisefarget poskx, y, 6]") and the target velocity

T . .
[vx, vy, a)Z] on the ocean’s nominal water plane. This means that thespate for the MDP can be reduced to

[x, Y, 6, Vy, Vy wZ]T. During operation the velocity of USVs do not change sigaifity during the operations and
that justifies the choice of the constant desired velocitjhefboat. Also we tuned the PID controller such that the
angular velocity is kept within a set bound. The sway veloaitd the angular velocities in the roll and the pitch
directions are generally very small and can be ignored ilMbB® state space. Nevertheless, the transition model
computation is performed using all the 12 DOFs. The stateesfi the planning purposes in this paper is thus,
reduced to a 3-tuple given by Equatib@.

s=[xy6]" (10)

where ,y) are the coordinates of the USV’s CG in tRe&f plane, and) is the orientation of the boat in the
XY plane.

We chose the grid dimension to be.Qt (USV length is nearly equal to 118). The orientation discretization
is chosen to be.624rad. The state space is depicted in Figdrén which theXY plane contains the location of
the CG and thé@ axis denotes the orientation of the boat. Pose of the boheiX Y plane is shown in Figuré(a)
and the corresponding location in the 3-D state space isrsirowigure7(b).

The action space is discretized as a set of relative pose anmasrfrom an initial state. We chose the set
of relative final pose as 7 radial pose vectors having radsadce of 3M m with final desired steering angles
varying from-2.142 to 2142rad in the increments of @28rad. We chose the desired path lengths and the
steering angles by first running the boat for 10 s along padtactons. Using this technique we generated a set of
7 waypoints which sfliciently cover the space around the boat and are dynamiealhable in 10 s.
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5.1.2. State Transition Map Computation

The state transition map for the continuous space was esgatéis the form of Equatiof. In this section we
shall describe the computation scheme to determine treetsgatsition map for the given USV in the discrete state
space. We first present the definition of the state transgitiobability.

Definition 3 Given an initial state and an actiony at timet, the probabilityp(X.at|X, Us) of ending up in
the statex, a; is called the state transition probability. We assume tiatitne taken to execute the actiaris At.

Figure8 shows a USV situated initially in the state When an actiony; is applied to it for 256 sample runs,
the trajectories traced by the USVs are shown in the figure.J®BVs trace a slightly lierent trajectory for each
sample run due to the ocean wave and USVs interaction foregpained before (see Equatidn The variation
in the resulting states for a given initial state and an acfields a probability distribution over the resulting stat

We use a data structure similar to state lattidfetg consider the dynamics but enhance it by embedding the
information of the state transition probabilities in thesof the state lattice and then make use of the stochastic
dynamic programming to solve the problem of trajectory plag under the motion uncertainty. The steps to
compute the state transition map are described below.

Algorithm 3 - State transition map computation
Input

(a.) Setof trajectorie® = (Tq, T, ..., Tp) for a given action set’ = (U, Uo, ..., Up) using Algorithm 1 and 2,

(b.) List of discretized state8 = [s;, S, ..., 5.]" representing the region of USV operation.
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Output State transition map.
Steps

(i.) Perform geometric transformation of each trajectaryli Figure8 shows a portion of the state space
with the rectangular grids representing region on the nahvimter plane, while the layers representing the
orientation of the vehicle that vary from O ta 2ad. For each simulation run (beginning fragnand taking
actionu;), the USV ends up in dlierent states, shown by crosses in FigRirStates, represents the nominal
ending state under the actiopwhen there is no environmental disturbance.

(ii.) Construct graph by connecting the states (nodes)aale from another states (nodes) using the sample
actions (arcs) ift.

(iii.) Determine the transition probabilities by findingtdbe ratio of the number of connections between the two
connected states and the total sample count of the actikes.ttn Figures, let the states; be connected to
the states for n(s;) times out ofN sample runs. Compute the probabiljiy of transition from states to

states; usingpij = @

(iv.) Return the state transition map.

In this way, the state transition map is obtained, whose si@de the states and the arcs are the dynamics
constraints. Each connection has a probability associaitedt, due to the system dynamics and the presence of
uncertainty due to ocean waves. It should be noted that tlxéyman number of children nodes of a given parent
node, for a state space withnodes can be up tobased on the variations in the samples of the action anddével
uncertainty in the environment. This makes the data stractery flexible in the sense of capturing the dynamics
constraints and the environmental uncertainty for extrsitoations such as rough sea-state.

5.1.3. Reward Function

The final element of MDP is the immediate reward for transitig from a given state to another state by
taking an action. The time spent by the USV to perform an act@@an be determined by the length of the
trajectory traversed by it. This entails that larger thegtérof the trajectory, smaller should be the reward for the
action, generating the trajectory, and thus, we shouldidenshe negative value of the trajectory length as the
reward. We chose the negative of the average length ¢ tigjectories traversed by the USV for each action in
the control set to determine the reward.

5.2. Results of Trajectory Planning

For the given action séf described in Sectiof.1.1 we determine the set of trajectori€susing Algorithm
1 and 2, for the sea-states 3 and 4. The average wave heiglihefgea-state 3, ranges from Orbto 1.25
m, whereas, for the sea-state 4, the average wave heightsréoge 1.25mto 2.5m [7]. The resulting set of
trajectories, for 256 Monte Carlo simulation runs is showifrigure9. The variation in the resulting trajectories
due to diferent actions in the action set is shown in Figu®és) and 9(b) for sea-state 3 and 4 respectively.
Variations in the final orientation in each Monte Carlo rurdo ocean uncertainty for various actions are shown
in Figures9(c) and 9(d). The variations in the trajectories for the sea-state 4rgelacompared to that for the
sea-state 3 due to the higher average ocean wave height. alfe- 4s 0.075 anddr = 0.1 to obtain Figure9.
The time taken to compute the set of trajectories for eactstda was 4 minutes. We chose sample size of 256
because the variability of the pose data can be captured assample size of around 256. This is illustrated in
FigurelO.

The MDP formulated in the Sectidhlcan be solved using numerous algorithms including the vitduation,
policy iteration, hierarchical techniques, approximatehhiques, etc68]. We chose the value iteration for com-
putation of the solution. The details of the value iteratidgorithm could be found in many references including
[1, 3, 69. The policies for each sea-state are computed using thie @iration over the obtained respective state
transition maps. The optimal policies are then used forrdeteng the trajectory to the target. Even if, the USV
is deviated from planned trajectory (mainly, the oriemais changed significantly in high sea-state) due to forces
caused by ocean waves, the computed policy can be used treraggan optimal trajectory to the target state.
The obtained trajectory is optimal given the uncertainfi@sised by ocean waves and unmodel&etes such as
the variations in the angular velocities and the linear eigjadue to the implemented PID controller limitations).
The dynamics based motion model developed in this papardeslthese variations in the transition probability.
The transition probability is then used to compute the oatipolicy in the MDP framework, which has been
proved by the researchers to yield global opti®g60)]. It should be noted that the optimality is achieved in the
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resolution sense, meaning that the chosen resolution at#tte-action space influences the achieved optimality.
Finer the resolution better will be the optimal solutiont freater will be the computational complexity.

The resulting trajectories for sea-states 3 and 4 are showviigure1l The origin and target orientation
of the vehicle is3. In case of sea-state 3, a shorter and riskier trajectorpytfh a narrow passage in the
midst of obstacles) is computed by the approach discuss#dsirpaper as shown in Figudel(a) In case of
sea-state 4 a longer but safer path is computed as shown umeHid(b) It should be noted that because of
the dynamics constraints built into the search graph thidhg motion primitives discussed in this paper, the
generated trajectories are always dynamically feasiliiés i§ the reason that the trajectory in case of Fiduirg)
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Figure 11: Executed trajectories obtained by using feddptm for sea-states 3 and 4. The feedback plans are
computed using the algorithms developed in this paper

Table 2: Summary of computational performance obtainetlgusiPU and temporal coherence based simplifica-
tion over CPU computations. Number of actions in actiorset7 and number of simulation rurd = 256.

CPU Baseline | GPU Baseline | CPU with clus-| GPU with

tering C = 50) | temporal
and temporal coherence
coherence (r =0.075)
(r =0.070)

Computation time| 395.0 28.2 80.2 9.1

(min)

Speed-up factor over 1.0 14.1 4.9 43.4

CPU baseline

Error introduced (%) | 0.0 0.0 1.25 1.04

bends near the target, as the vehicle needs to go down in trdarn to the desired orientation gf. The
disturbances due to the ocean waves are computed duringrtbkagon, which causes unpredictable deviations
in the trajectory. The computed policy makes it possiblelierUSV to take best action to safely reach the target,
even after it gets deviated due to the unpredictable ocesasnd he data structure and the algorithms presented
in this paper, enables incorporating tifeeets of dynamics and uncertainty in ocean waves, in the ctatipo of
state transition map, helping in performing physics-aviijectory planning.

The comparison of computational performance of GPU and C&3¢d model simplification techniques are
shown in Table2. The time taken to perform Monte Carlo simulations of the USWwamics to compute state
transition map using the algorithm developed in this papas @1 minutes. It should be noted that the CPU
baseline was computed by implementing the parallel vergisimg OpenMP) of the simulator code reported in
Ref. [9]. The overall speed-up using GPU in conjunction with tengpapherence based model simplification
technique was by a factor of 48by introducing an error of.04%. The number of states were chosen as 4800
(20x 20 x 12) and the number of actions as 7. The value iteration took ®8converge when computed on the
computed state transition map.

6. Conclusions

In this paper, we presented GPU based algorithms to comfateetsansition probabilities for USVs using 6
DOF dynamics simulations of interactions between oceavewaad vehicle. We used the obtained state transition
model in standard MDP based planning framework to genetatsigs-aware trajectory plans. We extended the
dynamics model for USV simulation, reported in Red], fo incorporate multiple wave components and random
phase lags in ocean waves. The approach described in thes igdfexible and is capable of handling any USV
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geometry, dynamics parameters, and sea-state. We deddgkipld based algorithm to perform fast Monte Carlo
simulations to estimate state transition probabilitie®)8Vs operating in high sea-states. We further improved
the computational performance by developing model singgliion algorithm based on temporal coherence. The
overall computational speed-up obtained is by a factor of B8 introducing a simulation error 0fd4% over the
CPU baseline. Transition probabilities can be computebdiwi®.1 minutes by using the algorithms described in
this paper. The paper also presents a case study to demernbkgapplication of the developed state transition
map to generate physics-aware trajectory plans for sé@sstaand 4 in MDP based planning framework.

A limitation of the approach is that we use potential flow tlydmased model, which is not suitable for simulat-
ing planing phenomenon occurring in fast moving boats. Tpe@ach presented in this paper, however, is flexible
to incorporate any other fluid flow model if available, to carntgstate transition model that can subsequently be
used in trajectory planning. Another limitation is that therent framework is only capable of handling dynamic
environmental disturbances with static obstacles, sué$lasds and shorelines. The trajectory planner, however,
cannot handle dynamic obstacles with isient dficiency, and a faster replanning approach can be used tetackl
with this issue T0].
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