
This document contains the draft version of the following paper:

A. Thakur and S.K. Gupta. GPU based generation of state transition models using simulations for unmanned
surface vehicle trajectory planning. Robotics and Autonomous Systems, Volume 60, Issue 12, December 2012,
Pages 1457-1471, ISSN 0921-8890, 10.1016/j.robot.2012.07.009.

Readers are encouraged to get the official version from the journal’s web site or by contacting Dr.S.K. Gupta
(skgupta@umd.edu).

1

GPU Based Generation of State Transition Models Using Simulations for
Unmanned Surface Vehicle Trajectory Planning

Atul Thakura, Petr Sveca, and Satyandra K. Gupta1b

a Department of Mechanical Engineering,
University of Maryland, College Park, MD 20742, USA

Email: {athakur, petrsvec}@umd.edu
b Department of Mechanical Engineering and

Institute for Systems Research,
University of Maryland, College Park, MD 20742, USA

Email: skgupta@umd.edu

Abstract

This paper describes GPU based algorithms to compute state transition model for unmanned surface vehicles
(USVs) using 6 degree of freedom (DOF) dynamics simulationsof vehicle-wave interaction. State transition
model is a key component of Markov Decision Process (MDP), which is a natural framework to formulate the
problem of trajectory planning under motion uncertainty. USV trajectory planning problem is characterized by
the presence of large and somewhat stochastic forces due to ocean waves, which can cause significant deviations
in their motion. Feedback controllers are often employed toreject disturbances and get back on the desired
trajectory. However, the motion uncertainty can be significant and must be considered in the trajectory planning
to avoid collisions with the surrounding obstacles. In caseof USV missions, state transition probabilities need to
be generated on-board, to compute trajectory plans that canhandle dynamically changing USV parameters and
environment (e.g., changing boat inertia tensor due to fuel consumption, variations in damping due to changes in
water density, variations in sea-state, etc.). The 6 DOF dynamics simulations reported in this paper are based on
potential flow theory. We also present a model simplificationalgorithm based on temporal coherence and its GPU
implementation to accelerate simulation computation performance. Using the techniques discussed in this paper
we were able to compute state transition probabilities in less than 10 minutes. Computed transition probabilities
are subsequently used in a stochastic dynamic programming based approach to solve the MDP to obtain trajectory
plan. Using this approach, we are able to generate dynamically feasible trajectories for USVs that exhibit safe
behaviors in high sea-states in the vicinity of static obstacles.

Keywords:
USV, vehicle simulation, fluid-rigid interaction, GP-GPU,trajectory planning, MDP, state transition map,
stochastic dynamic programming, motion uncertainty

1. Introduction

USVs operate in ocean environment with disturbances causedby waves, currents, wake of other ships, etc. The
disturbances impart significant uncertainty in vehicle’s motion. Due to the presence of high motion uncertainty,
an action of a USV may not lead to the exact desired motion despite of using a feedback controller. Vehicle
dynamics and motion uncertainty together make the task of trajectory planning very challenging, particularly in
highly cluttered environments. Consider Figure1, which shows the influence of vehicle dynamics and motion
uncertainty on the planned trajectories in a USV mission. CirclesM, P, andQ denote three consecutive waypoints
of a mission. When the USV reachesP, it needs to find the optimum trajectory (with minimum lengthand risk
of collision) betweenP andQ. One way, to solve this problem, would be to find the optimum trajectory, without
explicitly considering the ocean disturbances (shown as trajectoryA). Disturbances may be insignificant in the case
when the sea-state is calm (e.g., sea-states 1 to 3) or the USV is heavy enough to get deviated.If sea-state is very
rough (e.g., sea-state 4 and higher) or the USV is lighter, then the oceandisturbances may not allow the vehicle to
closely follow the intended trajectory (A) as the disturbances may lead to collisions with an obstaclein a narrow
region. A trajectory, which is safer with respect to the ocean disturbances but longer in length is shown in Figure1
as trajectoryB. It is thus evident that the physics of interaction between USV and ocean waves greatly influences

1Corresponding author

Draft November 18, 2012

Figure 1: Trajectory plans for different ocean wave disturbance conditions. TrajectoryA is shorter but riskier and
may lead to collisions in the event of high sea-state whereasB is longer but more conservative to minimize the
risk of collision. If sea-state is calm (e.g., sea-states 1 to 3) or USV is heavy enough so that the disturbances are
insignificant then trajectoryA should be chosen. If sea-state is rough (e.g., sea-state 4 and higher) or USV is light
then trajectoryB should be chosen.

the choice of trajectory plan. The variations take place in dynamical parameters of USV-ocean interaction such as
inertia tensor of USV due to fuel loss, damping parameters due to change in water density, etc. during mission. In
addition to that sea-state changes during the execution of mission due to change in weather. Based upon dynamics
based interaction between USV and ocean waves and changing sea-state, a suitable trajectory, which is safe and
still not overly conservative amongA andB, needs to be planned.

Above outlined physics-aware trajectory planning problemin highly uncertain ocean environments can be
solved by combining MDP [1, 2, 3] framework and a dynamically feasible motion primitive based state space
representation [4, 5]. MDP is a natural framework to formulate the problem of trajectory planning under motion
uncertainties [1, 3]. The use of motion primitives in MDP based framework, thus,allows generating trajectories
that explicitly consider the constraints imposed by the vehicle dynamics. This is unlike planning on a rectangular
grid that might yield a dynamically infeasible trajectory.In this paper we incorporate vehicle dynamics and
motion uncertainty into motion-primitives using Monte Carlo runs of high-fidelity 6 DOF dynamics simulation
of interaction between USV and ocean waves. We represent uncertainty in motion primitives by using a state
transition function. This function maps each possible discretized state of the vehicle and a given action to a list of
possible resulting states with respective transition probabilities.

State transition function can be obtained, by either running field experiments or by using computer simulations.
Performing field experiments is the most accurate method, but is expensive and may be infeasible when needed
to be performed during a mission. Moreover, the number of experiments may be very large when multiple sea-
states and vehicle dynamics parameters need to be taken intoaccount, which is the case during long missions.
Computer simulations are inexpensive and can be improved, by incorporating experimental data. The complexity
of a mission and an environment require generating the statetransition map on-line, based on the information
gathered by the sensors during vehicle operation. It may be infeasible to run all possible simulations off-line (i.e.
before the mission) to generate the state transition map. This is because, the sea-state is decided by several factors,
namely, the amplitudes, frequencies, wave directions, andthe wave numbers of the wave components forming
the ocean wave [6, 7]. Each of these factors is continuous and has non-linear influence on the ocean wave. In
addition to this, the ocean interacts with USVs in a non-linear fashion. The initial conditions for the simulations
can thus, become combinatorially prohibiting for an off-line estimation of state transition map. A potential flow
theory based high fidelity 6 DOF dynamics simulator can generate a fairly accurate state transition map and aid

3

in generating both safe and low cost trajectories [8, 9, 10]. The major problem with using such a high fidelity
simulator is the slow computational performance of the simulation. This is mainly because of the fluid to rigid
body interaction computation. One way to accelerate the computations is by using parallelization. Performing
parallel computations would require computing clusters tobe placed on the base and communicating with the
vehicle over a network, which might be generally unreliabledue to possible communication disturbances. The
alternative of placing clusters directly on-board might add to the weight of the payload, which may not be desired
or generally not possible. Another way to perform on-board computing is by using GPU. Recently, expensive
scientific computations in various robotics problems are performed using GPUs, which are very powerful and
lightweight as well [11, 12, 13, 14]. In addition to using GPU computing, we also employ model simplification
techniques [9] to further improve computational performance of the simulation. A faster computation of state
transition map may be required for some parts of the mission,where computing speed-up available using GPU
alone may not be enough. The accelerated dynamics simulation is then used to establish connectivity among the
vehicle’s discretized states to develop a state transitionmap represented using a connectivity graph. The trajectory
planning problem is then solved using value iteration of thestochastic dynamic programming (SDP) [1].

The key contributions of this paper are: (1) incorporation of 6 DOF dynamics simulation in state transition
map estimation, (2) use of GPU based parallelization schemes to make the simulation faster for on-line computa-
tion of state transition map, (3) incorporation of temporalcoherence based model simplification techniques with
GPU acceleration for computing state transition map even faster, and (4) solution of trajectory planning problem
using developed state transition map data structure, so that the computed trajectory plan satisfies the dynamics
constraints as well as handles motion uncertainties.

2. Literature Review

In this paper we focus on the following issues related to trajectory planning problem of the USVs under motion
uncertainty, namely, (i) simulation of the USVs, and (ii) physics-aware trajectory planning algorithm. We assume
that the state of the vehicle can be estimated perfectly at all times. We discuss the related work in both the areas
in this section.

2.1. Fluid-Rigid Body Interaction Simulation

Fluid-rigid body interaction simulations are computationally expensive because of the coupling between the
fluid flow and the rigid body motion namely (1) influence of rigid body motion on the flow of fluid in which it
moves, and (2) the influence of the fluid motion on the rigid body motion. Simulation approach in which both the
couplings are considered explicitly in each time step are called two-way coupling solution; whereas, if one of the
couplings is replaced with some faster model then it is called one-way coupling solution. In this section we shall
review some common representative techniques for fluid-rigid body interaction simulation. Two-way coupling
based approaches not necessarily developed for vehicle andocean interaction simulation are: Euler’s momentum
equation, Navier-Stokes law, Smoothed Particle Hydrodynamics (SPH) technique, and Lattice Boltzmann Method
(LBM). In Euler’s momentum equation based technique, the momentum equation is solved for fluids numerically.
Battyet al. reported a computation time of 25 s per frame using a grid sizeof 60×90 [15]. Carlsonet al. reported
numerical solution of Navier-Stokes equations with computation time of 27.5 s per frame for a domain of size
64× 64 [16]. In SPH technique, the fluid is assumed as a collection of particles and the motion of fluid particles
and their effects on a floating rigid body is modeled based on a kernel function weighted by the distance of the
particle from the floating rigid body. Beckeret al. reported a computation time of 3.47 s per simulation step for
simulating fluid with 850000 particles [17]. In LBM, fluid flow is represented as motion of fluid particles, where
each particle follows a velocity distribution function andmoves in discrete time steps and can collide with other
particles (which behave in the same way). The collision rules are such that the statistical particle motion (or fluid
flow) obtained is consistent with the continuity conditions. Garciaet al. developed LBM based fluid-structure
interaction approach [18]. Geistet al. developed a real-time approach for wave surface generationand attained
25 Hz for grid of size 10242 [19]. Geveleret al. developed LBM based approach for simulating laminar flow
with free fluid surface on multi-core CPU and many-core GPU processors and reported a factor of 8 speed-up on
GPU code with respect to multi-threaded CPU code [20]. Gladkovet al. reported direct simulation Monte Carlo
(DSMC) for solving Boltzmann equations on per particle basis (to solve rarefied fluid flow problems) by using
GPU to obtain speed-up by a factor of 65 over serial implementation.

A survey on boat simulation was reported by Beck and Reed [21]. Craigheadet al. reported another recent sur-
vey on open source boat simulators [22]. Some of the key USV simulation techniques are RANS based techniques,
strip theory based techniques, kinematic model based techniques, and potential flow theory based techniques. In
recent years, RANS based techniques for fluid flow around boats for simulating boat motion are becoming popular

4

because of their accuracy in the problems involving boundary layer effects, turbulence, wakeetc., [23]. Kim [24]
reported computation time of 24 hours using 84 processors onMauis IBM-SP3 computer for 360 simulation time
steps. Some of the other implementations of RANS code can be found in [25, 26, 27]. There are many research
papers reported in the area of the underactuated controllerdesign for the USVs that utilize 3 DOF simplified mod-
els which neglect the rolling, pitching, and heaving motions [28, 29, 30, 31, 32, 33]. Strip theory is mainly used
for slowly moving slender geometries [34, 35, 36]. In potential flow theory, fluid flow is assumed to be irrotational
and inviscid [37]. Potential flow theory based techniques are used by severalresearchers to perform the motion
simulation of USVs [8, 9, 10]. Thakur and Gupta reported real time computational performance of USV simula-
tion using clustering, temporal coherence, and multi-coreparallelization based model simplification techniques in
potential flow theory based simulation framework [9].

In nutshell:

• Euler’s equation, Navier-Stokes, and RANS equation based techniques yield highly accurate results but one
of their limitations is the dependence of the computation time on the domain size and the slow speed of
computation.

• SPH technique results into good quality animations but the problem with the approach is the requirement of
a large number of particles to simulate the fluid which in turnincreases the computational time.

• The 3 DOF simulations are computationally very fast since they neglect the effect of fluid flow on the roll,
pitch, and yaw and as a result are not accurate enough.

• Strip theory based techniques are computationally very fast but are not suitable for taking into account the
variations in hull geometry and wave interactions. This is because, in strip theory, the hull geometry is
approximated to the nearest ideal shape (such as ellipsoids, spheres, etc.). This idealization might yield
significant errors in hydrodynamic and hydrostatic force estimations.

• The accuracy obtained by the potential flow based technique are not as good as RANS but are computation-
ally faster and much easily amenable to the 6 DOF computations and hence, much accurate compared to the
simplified 3 DOF models. We thus, use potential flow theory based model in this paper.

2.2. Physics-Aware Trajectory Planning

There is a large body of literature [1] in robot motion planning and we are presenting here only a review of
representative research papers. We shall mainly focus on research related to robot trajectory planning considering
differential constraints or in other words physics-aware robottrajectory planning. The literature for trajectory
planning under differential constraints falls into following categories [38] namely, (1) state space sampling based
trajectory planning, (2) decoupled trajectory planning with minimum distance path, (3) finite-state motion model
or the maneuver automaton (MA), (4) mathematical programming, and (5) model predictive control (MPC). In
state space sampling techniques, the robot state space is discretized and then searched for the low cost collision free
trajectory. Several schemes for state space discretization have been reported. In a simple grid based approach, the
state space is discretized into regular cells and trajectory is searched in that space [39]. In navigation function based
approach, a navigation function is defined over the discretized state space and determined using algorithms such as
value iteration followed by determination of a trajectory.Interpolation is used [40] to make the planning domain
continuous. In rapidly exploring random trees (RRT), a biased stochastic search is performed in configuration
space to generate a search tree [41, 42, 43]. In decoupled approach, planning is executed in two phases. In the
first phase, a discrete path or set of waypoints [44] is determined using graph search technique such as A* [45, 46]
on a discretized representation of the state space by considering only kinematic constraints of the robot. In the
second phase, dynamically feasible trajectory is determined by solving two-point boundary value problem between
consecutive waypoints using gradient based optimization approaches. Suzukiet al. used A* based approach for
waypoint generation and RTABU search based optimization approach for trajectory generation [45]. Schereret al.
reported an evidence grid with a Laplacian-based potentialmethod for path planning, an obstacle avoidance based
on reactive planning, and velocity controller for trajectory generation [47]. In MA, the action space is discretized
into action automatons to reduce the search from infinite dimensional space to finite dimensional. Frazzoliet
al. presents rigorous definition of MA in [48]. Some other related works can be found in Refs. [4, 49, 50]. In
mathematical programming approach, trajectory planning problem is posed as a numerical optimization problem
with the robot dynamics as constraints and solved using techniques such as mixed integer linear programming,
nonlinear programming, and other constrained optimization techniques [51, 52, 53, 54]. In model predictive
control, the trajectory planning problem is posed again as an optimization problem, but optimized over finite

5

horizon. This way the solution obtained is suboptimal but takes lesser computation time than optimizing over
infinite horizon [55, 56, 57].

Under motion uncertainty, MDP framework is used to express the trajectory planning problem and solved
using dynamic programming (DP) algorithms [58]. However, since the state space of a planning problem under
motion uncertainty is usually very large, most of the practical algorithms have been developed [59, 60, 61] to
compute an optimal or close-to-optimal solution to the problem by running value iteration over a carefully chosen
subset of the state space.

In the USV trajectory planning domain a three layered architecture for Dijkstra algorithm based global plan-
ning and A* based local planning is presented by Casalinoet al. [62]. They used a simple kinematic model with
no environmental disturbances. Benjaminet al. developed a technique for collision avoidance and navigation of
the marine vehicles respecting the rules of the roads [63]. Soltanet al. developed nonlinear sliding mode con-
trol based trajectory planner for a 3 DOF dynamics model [64]. Xu et al. reported a receding horizon control
based trajectory replanning approach where the global planis determined using predetermined level sets from
experimental runs [65]. Autonomous guidance based on feedback control is developed by Sandleret al. [66].

In nutshell:

• Most of the trajectory planning algorithms described aboveassume deterministic environmental conditions
or conservatively approximated uncertainties. A conservative approximation of motion uncertainty due to
environmental disturbances interacting with vehicle dynamics might lead to sub-optimal plans.

• In order to incorporate motion uncertainty into the trajectory planning problem, MDP based framework
is often used. State transition probability encodes the vehicle dynamics and environmental disturbance
information into MDP formulation.

• In order to do physics-aware trajectory planning, one way toincorporate the physics information into the
problem formulation is to use Maneuver Automatons or motionprimitives and employ simulations to esti-
mate state transition probabilities.

One of the challenges in incorporating simulation based state transition map is slower computational speed.
Dynamics simulation based state transition map estimationis computationally slow due to the fluid-rigid body
interaction computations. This can be alleviated using model simplification techniques. In this paper, we focus on
trajectory planning based on the Maneuver Automaton framework from which we use only maneuvers, not trims,
similar to the lattice based planning in Ref. [4]. We extend this framework to consider the motion uncertainty
due to ocean waves using MDP framework. A similar approach for trajectory planning algorithm for unmanned
balloons under the influence of stochastic winds (by estimating transition probabilities) have been developed by
Wolf et al. [67].

3. Problem Statement and Solution Approach

3.1. Problem Statement

Given,

(i.) a finite non-empty state spaceX,

(ii.) a finite non-empty action spaceu(x) for each statex ∈ X,

(iii.) a dynamics motion model ˙x = f (x, u,w) of the USV, wherew is a nondeterministic noise term and fluid
flow is based on potential flow theory,

(iv.) goal statexG, and

(v.) obstacle mapΩ such that,

Ω(x) = 1, if x lies on obstacle

= 0, if x is on free space,

compute following:

6

Figure 2: Description of coordinate systems used in the presented model: Inertial and body coordinate systems
are shown.

(i.) State transition map overX andu: The state transition map should represent the motion uncertainty ex-
hibited by the given motion model under each given action inu in the form of associated probability of
transition for the corresponding state transition probability p(xk|xi , ui), ∀xk, xi ∈ X, andui ∈ u. Perform
GPU based computing acceleration and develop model simplification techniques for on-line estimation of
state transition map.

(ii.) Trajectory plan: Using the state transition map computed in step (i), determine trajectory plan to generate
dynamically feasible trajectory in each planning cycle to reach target locationxG from any given starting
location of the USV. The computed trajectory plan ensures that the generated trajectory is updated in every
planning cycle to recover from the pose errors introduced due to the influence of the ocean environment.
This kind of trajectory plan is also referred to asfeedback planin Chapter 8 of Ref. [1]. We assume perfect
state information is available at all times.

3.2. Approach

The approach is enumerated in the following steps.

(i.) Enhance the given USV motion model to suit the requirements for GPU implementation. Implement the
motion model on GPU and develop simplification algorithms toenable faster simulation.

(ii.) Model the trajectory planning problem as MDP by representing state-action space in a lattice data structure
and compute the state transition map for the discretized action space.

(iii.) Apply value iteration of stochastic dynamic programming to determine the trajectory plan. The generated
trajectory plan enables the USV to find the optimal trajectory from each discretized statex ∈ X.

In the following sections, we discuss the above steps in detail.

4. Dynamics Simulation of USVs

In this section we present the governing equations of the implemented dynamics model [9]. We extend the
equations to handle the arbitrary number of wave componentsand to incorporate uncertainty into the system.

4.1. Motion Equations: Interaction Between USVs and Ocean Waves

We implemented the 6 DOF dynamics model for vehicles given byFossen [7]. In this model, a vehicle is
assumed to be a rigid body. The coordinate system used in the model is shown in Figure2. The origin of the
inertial frame of reference is set at the nominal water levelwith the Z-axis being vertical and pointing upwards.
The body coordinate system for representing the hull geometry and the velocity directions of the USV is attached
to boat’s center of gravity (CG).

The governing dynamics equation of boat’s motion in ocean waves is given in Equation1.

MH v̇+CH(v)v+ DH(v)v+ g(p) = FE + FP

ṗ = Jp(v)
(1)

7

where,
p = [x, y, z, θx, θy, θz]T is pose vector expressed in the inertial frame, [x, y, z]T is the Cartesian position vector

in m andθ’s are Euler angles about subscript axes inrad,

v = [vx, vy, vz, αx, αy, αz]T is velocity vector expressed in the body frame relative to the inertial frame,vt =

[vx, vy, vz]T is linear velocity inms−1 andvr = [αx, αy, αz]T ’s is angular velocity inrads−1,

R =





















cycz sxsycz − cxsz cxsycz + sxsz

cysz sxsysz + cxcz cxsysz − sxcz

−sy sxcy cxcy





















is rotation matrix rotating a vector expressed in the

body frame to the inertial frame,cx means cosθx,

J =

[

R 03×3

03×3 Jr

]

is Jacobian matrix,

Jr =





















1 sxty cxty
0 cx −sx

0 sx
cy

cx
cy





















,

~x× ≡ S(~x) =





















0 −x3 x2

x3 0 −x1

−x2 x1 0





















is matrix dual (for cross product) of vector~x = [x1, x2, x3]T ,

pG,B is vector representing the position of CG in the body frame ofreference,

m is mass of the USV inkg,

Ib is 3× 3 matrix representing the inertia tensor of the USV inkgm2,

MRB =

[

mI3×3 −mS(pG,B)
mS(pG,B) Ib

]

is matrix representing inertia tensor of the USV,

MA is (6× 6) diagonal matrix representing the added mass of the USV,

MA,11 = 0.1m

MA,22 = 4.75ρa2

MA,33 = 4.75ρa2

MA,44 = 4.75ρa2

MA,55 = 0.396ρa2L2
x + 0.0833

0.1m
LX

L3
z

MA,66 = 0.0833
0.1m
LX

L3
y + 0.396ρa2L3

x

whereρ is density of water inkgm−3, Lx, Ly, andLz are length, width and height of the bounding box of the
hull in m respectively,

MH = MRB+ MA is (6× 6) matrix representing the total inertia,

CRB =

[

mS(vr)3×3 −mS(vr)S(pG,B)
mS(vr)S(pG,B) −S(Ibvr)

]

is Coriolis and centripetal matrix,

CA =

[

03×3 −S(MA,11vt + MA,12vr)
−S(MA,11vt + MA,12vr) −S(MA,21vt + MA,22vr)

]

is matrix representing the effect of added

mass,

MA,i j represents (i, j) sub-matrix ofMA of size 3× 3,

CH = CRB+CA is 6× 6 matrix representing the total effect of Coriolis and added mass term,

DH is 6× 6 damping matrix,

8

g(p) is 6× 1 vector representing the restoring force expressed in the body frame inN,

FE is 6× 1 vector representing the environment force vector expressed in the body frame inN,

FW is 6× 1 vector representing the ocean wave and the vehicle interaction force expressed in the body frame
in N, and

m is mass of boat inkg,
FP is 6× 1 actuation force vector expressed in the body frame inN.
The fluid flow is computed based on potential flow theory [37]. Based on potential flow theory, the ocean wave

is represented using a spatio-temporally varying height field η composed ofQ wave components and given by the
following equation.

η(x, y, t) =
Q
∑

j=1

A j cos(k j xcosθw, j + k jysinθw, j − ω j t + ψ j)+

0.5A2
j k j cos(2k j xcosθw, j + 2k jysinθw, j − 2ω j t + 2ψ j)

(2)

where,
A j, ω j , k j , θw, j are the amplitude, frequency, wave number, and wave direction respectively forjth wave com-

ponent, and
ψ j ∈ [0, 2π) uniformly random phase lag term.
The velocity potentialφ is computed using the following equation.

φ =

Q
∑

j=1

gAj

ω j
exp(k jz) sin(k j xcosθw, j + kysinθw, j − ω j t + ψ j) (3)

Velocity potential is then used to compute force acting on USV due to ocean wave using following equation.

FW =















ρ
∮

SB

[

∂φ
∂t + 0.5∇φ.∇φ

]

d~S

ρ
∮

SB

[

∂φ
∂t + 0.5∇φ.∇φ

] (

~r × d~S
)















(4)

whereSB is instantaneous wet region of the USV. We assume that force acting on boat is only due to ocean
waves (FE = FW) and ignore forces due to currents, wakes, etc. However, given a suitable model, simulation
framework is capable of taking other types of forces into account.

The termFP on the right hand side of Equation1 is the force due to the actuation (the thrust and the rudder
angle). There are many actuator models available for the USVs and can be plugged into Equation1 [7, 8]. We
used a model given in Equation5.

FP =
[

K1 ‖ nprop ‖ nprop, 0, 0, 0, 0,K2 ∗ K1 ‖ nprop ‖ npropθrud

]T
(5)

whereK1 is a constant and we chose it to be 1000,nprop is the propeller’s rpm,K2 is a constant and we chose it to
be 10, andθrud is the rudder angle.

We can express the parametric form [1] of the 6 DOF model as follows:

ẋ = f (x, u) (6)

wherex =
[

pT vT
]T

is the state of the USV,

u =
[

vf Θ
]T

is the commanded control action to go with forward velocity of vf at a heading angle ofΘ, and

f =
[

(M−1
H (−CH(v)v− DH(v)v− g(p) + FE + FP)T Jp(v)T

]T
.

We specify the desired control action using the desired forward velocity and the heading angle. Any other kind
of desired control actions such as the desired angular velocity can also be chosen based on the available actuation
models. For the purpose of this paper we assume that the USVs are controllable using the control actions specified
by vf andΘ.

The thrustnprop and the rudder angleθrud can be computed using PID controller.
We chose PID controller because of its widespread use and ease of implementation, however, in order to

execute the commanded control actions any other controllersuch as the backstepping [68], sliding mode, etc. can
be used [28].

9

0 5 10 15 20 25 30
−5

0

5

X (m)

Y
 (

m
)

(a) Sample trajectories.

(b) Frequency distribution of USV’s ending positions for sample trajec-
tories.

−100 −50 0 50 100
0

50

100

150

θ (degrees)

F
re

qu
en

cy

(c) Frequency distribution of USV’s ending orientations for sample tra-
jectories.

Figure 3: Uncertainty in USV’s motion model for action alongX axis generated using sample size of 256 (com-
puted for sea-state 4 with average ocean wave height of 1.8mand boat moving at the velocity of 3ms−1).

4.2. Uncertainty in the Motion Model

In Section4.1, the ocean wave (the ocean wave height and the velocity field)was initialized using given wave
amplitudes, frequencies, and directions. An ocean wave, once initialized evolves deterministically with time and
can be predicted exactly using the solution of Laplace equation (see Equation2) [37]. However, the ocean waves
initialized with the same parameters might look different due to the presence of the uniformly random phase lags
ψ j between each wave component. This leads to prediction of slightly different trajectories in each simulation
run of the USVs operating under the ocean waves with exactly identical ocean wave parameters (initialized with
uniform random phase lags) and an action. This effect is shown in Figure3(a), in which the USV is acted upon
by a PID controller to move along a straight line for 256 different simulation runs in ocean wave built up of
identical wave components. The variation in the trajectories of the USV in each simulation run is due to the
uncertainty introduced by random phase lags (see Equation2) in the ocean wave components despite of the other
ocean parameters and the PID control objective being exactly identical. Figure3(b) shows the histogram of final
positions reached by the USV when commanded to reach at (30, 0) with an orientation of 00 due to the disturbances
caused by the ocean waves. Figure3(c) shows the variation in the final orientation while the commanded action
was 00. It should be noted that the variation in the ending pose is one of the main cause of randomness in the
motion model, which accumulates over the trajectory.

Formally, we can express the parametric form of the dynamicsmodel (with uniformly random initial phase lag
parameters) as follows:

ẋ = f (x, u,w) (7)

wherew is the noise introduced due to the uniform random phase lagsψ j .

10

Figure 4: Implementation of USV simulator on GPU.

4.3. Simulator Implementation on GPU

As described in Section4.2, and shown in Figure3, the USV ends up in different poses for exactly identical
action objective and initial states for different phase lag initializations. This means that for sufficiently large num-
ber of simulation runs with uniform phase lag initializations for a given set of initial conditions and action goal,
the distribution of final states will represent the influenceof the ocean on the USV’s motion. In this section, we
describe Monte Carlo simulation based approach to estimatethe influence of nondeterministic effects of ocean on
USV’s motion for a given set of action goals. The Monte Carlo sampling based approach requires running numer-
ous dynamics simulations with uniformly random initial phase lags among wave components and hence, real-time
performance of the simulator may not be enough [9]. We describe the enhancements made in the potential flow
theory based simulation model [8, 9, 10] for suitability of implementation on GPU.

We define state vector tupleX = (x1, x2, .., xM), wherexk = [vT
k xT

k]T is state vector ofkth simulation run andM
is the number of Monte Carlo simulation runs.

Let U = (u1, u2, ..., uM) be the action vector tuple with each element as a vector specifying action for corre-
sponding simulation run. We denote action set for the entiresample using the tupleΥ = (U1,U2, ...,UP) where
U j ’s are action vector tuples andP is the number of action goals.

Also, letW = (w1,w2, ...,wM) be the phase lag vector tuple wherewk = [ψ1,k, ψ2,k, ..., ψQ,k]T is the phase lag
vector forkth simulation run andψq,k is phase lag ofqth wave component ofkth simulation run.

Thus, the augmented dynamics equation can be written by generalizing Equation7 for M Monte Carlo simu-
lation runs as follows:

Ẋ = F(X,U,W) (8)

where,F is the modified dynamics function representing simultaneous simulation runs.
Let FWT = (FT

W,1, F
T
W,2, ..., F

T
W,M) be the ocean wave force tuple whereFW,k is ocean wave force vector forkth

simulation run.
The computation steps of the simulation are enumerated below (see Figure4).

Algorithm 1 - GPU based Monte Carlo Simulation of USV’s dynamics
Input

(a.) Initial state vector tuple of USVX0,

(b.) number of Monte Carlo runsM,

(c.) desired target state vector tupleXt,

(d.) desired trajectory lengthl,

(e.) radius of acceptancer,

(f.) number of ocean wave componentsQ,

(g.) time step size∆t,

(h.) action setΥ,
11

(i.) polygonal geometry of USV, and

(j.) sets of amplitudesAq, frequenciesωq, directionsθq corresponding to each wave component, where indexq
varies from 0 toQ− 1,

Output Set ofM trajectories
Steps

(i.) Initialize the state vector tuple of USVX = X0, phase lag tupleW, time t = 0, and trajectory length vector
L = [0, 0, ..., 0]T. Copy all configuration variables such as ocean wave parameters, dynamics parameters
and geometry parameters to constant memory cache of GPU so that data is not required to be transferred in
each simulation time step.

(ii.) Transform the USV geometry toM states represented byX. Each transformation is performed by separate
GPU thread. In this case, same instruction of transformation needs to operate onMN similar data, whereN
is the number of polygonal facets representing the USV’s geometry. We perform computations of this step
on GPU.

(iii.) Determine the instantaneous wet surfaces (SB, j) of the USV by finding out the facets lying beneath and on
the wave surface (computed by superimposing givenQ ocean wave components using Equation2) corre-
sponding tojth phase lag vectorw j and use Equation4 to compute the wave force tupleFWT. In this case
computation of intersection of each polygonal facet with instantaneous ocean wave and force computation
is performed by separate GPU threads. The number of independent operations required is againMN. We
perform computations of this step on GPU.

(iv.) Determine the required control force vector tuple corresponding to the action setΥ using Equation5.

(v.) Determine the Coriolis matrixCk(v) and the damping matrixDk(v) corresponding to each Monte Carlo
simulation run. The number of independent operations required in this step isM. We perform computations
of this step on GPU.

(vi.) Use Euler integration to solve Equation8 by using the wave force tuple, Coriolis matrix, and damping
matrix. Update timet to t+∆t. The number of operations needed in this step isM. We perform computations
of this step on GPU.

(vii.) Find Euclidean distance∆X between state tuple obtained from step (vi) andX and update trajectory length
vectorL with L + ∆X. Compare each element ofL with the desired trajectory lengthl. The Monte Carlo
runs, for which trajectory length exceeds the set trajectory lengthl, do not update corresponding elements
of X whereas for other runs update the elements inX with the solution found in step (vi). Since this is a step
with logical branching we perform it on CPU.

(viii.) If trajectory lengths for all the runs exceedsl or all simulated instances of USV are within the radius of
acceptancer from the respective target positions then returnM trajectories else go to step (ii).

4.4. Simulation Results of GPU Based Parallelization
We used NVIDIA’s CUDA software development kit version 3.2 with Microsoft Visual Studio 2008 software

development platform on Microsoft Windows 7 operating system for the implementation of Algorithm 1. The
graphics hardware used was NVIDIA GeForce GT 540M mounted onDell XPS with Intel(R) Core(TM) i7-
2620M CPU with 2.7GHz speed and 4GB RAM. We chose the number ofCUDA threads per block to be 256 for
each kernel function. For the CUDA kernel function needed towork on J data members, we chose the number
of computing blocks to beMN+T−1

T . The number of triangular facets in the USV model used in the simulations
was 11158 and the bounding box dimensions of the model was 12× 4 × 4 m. We chose ocean wave composed
of Q = 20 components with 6 components having amplitude of 0.2 m while rest 14 with amplitude of 0.1 m. 16
of the ocean wave component had frequency of 1 Hz while four ofthem had frequency of 2 Hz, and the direction
θw’s were evenly distributed in the range 0 to 2π rad . We chose simulation time step of size 0.05 s and ran
the simulation for 200 time steps for 256 random phase lag initializations. Table1 shows the comparison of the
computational performance on GPU as compared to the CPU based computation. OpenMP based multi-threading
enabled 85% average CPU usage, while running the baseline simulations. GPU based approach resulted into
speed-up by factor ranging from 3.8 to 14.0, for the presented test case. Table1 also shows that the speed-up
factor increases with increase in the number of Monte Carlo runs, because of the highly data parallel nature of
the computations. For larger number of simulation runs, thecost of memory transfer is appropriated and hence,
speed-up is larger compared to smaller number of runs.

12

Table 1: Comparison of the computation gain due to GPU over the baseline computations performed on CPU

M Baseline
computa-
tion time
on CPU
(s)

GPU
Computa-
tion time
(s)

Speed-up

1 13.7 3.6 3.8
2 27.1 5.3 5.2
4 54.2 8.0 6.8
8 107.4 13.0 8.3
16 214.4 22.0 9.8
32 425.6 36.9 11.5
64 846.6 65.4 12.9
128 1691.2 123.8 13.7
256 3386.3 241.9 14.0

4.5. Model Simplification on GPU

More than 99% of the computation time in the USV simulation isspent in computing the forces acting on the
USV due to the ocean waves [9]. The ocean is represented as a spatio-temporally varying heightfield in this paper.
One of the major factors influencing wave forces is the variation in the wave heightfield in addition to the fluid
velocity around the USV. The ocean wave heightfield does not change significantly with each simulation time
step. For example, for a simulation time step of length 0.05 s, the possibility of ocean wave heightfield around the
USV changing significantly is very low. In such a situation, one can utilize the force computed in the previous
time step in the current time step of the simulation to save some computational effort. This is the underlying idea
behind temporal coherence. In order to explain the idea of temporal coherence in a more concrete way, we define
instantaneous ocean heightfieldandheightfield distance vectoras follows.

Definition 1 Let the ocean wave be specified byQ components of given amplitudes, frequencies, and direc-
tions. Let state vector tupleX denote the instantaneous states of the USV for each Monte Carlo simulation run,B j

be the bounding boxes of the USV located at the poses given byX and rectanglesRB, j be the projections ofB j on
theXY plane. LetΛ j denote uniform grid of sizem× n onRB, j.

We define instantaneous ocean wave height-fieldG as a (Q×mn) sized matrixG, such that the rows ofG are
the vectors made up of ordered elevations of the ocean wave atthemngrid points onΛ j .

Definition 2 For a pair of ocean wave height-fieldsG1 andG2, we define theheightfield distance vector~hd

betweenG1 andG2 as the following row-wise second order norm.

~hd = ‖G1, j −G2, j‖ (9)

whereG1, j is the jth row of G1, and indexj denotes Monte Carlo run from 1 toM.
The force need not be computed in a simulation time step, if the ocean wave heightfield distance around the

USV from the previous simulation time step is not significant. The temporal coherence test is performed as an
additional operation in step (ii) of Algorithm 1 (describedin Section4.3). If it is found that the ocean wave
heightfield distance corresponding to at least one Monte Carlo run has changed significantly then step (iii) of
Algorithm 1 is performed, else step (iii) is skipped and step(iv) is directly executed. By this, the execution of step
(iii) in Algorithm 1 is avoided some times, which introducessome simplification error, but reduces computation
time.

The steps for performing temporal coherence based model simplification on the GPU are described below.
Algorithm 2 - Temporal coherence based Model Simplification

Input

(a.) State vector tupleX,

(b.) number of Monte Carlo runsM,

(c.) number of rows (m) and columns (n) of grid,

(d.) simulation timet and time step size∆t,

(e.) thresholdτ for heightfield, and
13

(f.) thresholddτ for differential of heightfield.

Output Decision about whether to perform force computation in the next time step or reuse force computed
in the earlier time step
Steps

(i.) If t = 0 return decision to perform force computation.

(ii.) If t = ∆t then initialize heightfieldGp and differential heightfielddGp to a null matrix of sizeM ×mnand
store in global memory.

(ii.) Compute ocean wave heightfieldG at timet and then compute differential heightfielddG = G−Gp.

(iii.) Compute heightfield distance~hd vector betweenG andGp.

(iv.) Compute differential heightfield distanced~hd betweendG anddGp.

(v.) If all the elements of~hd are less thanτ and if all the elements ofd~hd are less thandτ, return the decision to
reuse the previous value of force else updateGp = G anddGp = dG and return the decision to recompute
force.

4.6. Results of Model Simplification on GPU

We chosem = 2, n = 5, M = 256, anddτ = 0.1, and performed the simulations under identical ocean and
USV dynamics parameter settings and variedτ from 0.00 to 0.10 in the increments of 0.025. The computation
speed-up factor over the GPU baseline computation time (when τ = 0.00) varies from 1.04 to 3.61 depending
on the set thresholdτ as shown in Figure5(a). The mean square error in force computation introduced due to
increasing thresholdτ is shown in Figure5(b). The temporal coherence based simplification introduces errors in
the computation of the final pose of the USV in Monte Carlo runs. Figure5(c)shows the variation in the Euclidean
distance of final positions of USV from the nominal position and the difference of each final USV orientations
from the nominal orientation obtained by the Monte Carlo simulation runs. The nominal pose is the commanded
pose to which USV should reach if there are no disturbances. In the test case, the nominal position is (30, 0) and
the nominal orientation is 0rad. The variation in distance and orientation difference increases with increasing
threshold. This is because, greater the threshold, fewer number of times force is computed and hence, more will
be the inaccuracy.

We chose fixed randomization of the ocean wave for evaluatingthe plots, in order to prevent the influence of
randomization on the computing time and the variation of thepose errors.

It should be noted in Figure5, that the computing gains increase slowly in the range 0< τ < 0.025, because,
for smaller threshold, algorithm is unable to reuse force values computed in the previous steps and owing to the
same reason, the variation in the final pose and nominal pose is also comparatively less pronounced. For larger
values of thresholdτ > 0.075, the variation in the distance and orientation increases rapidly. It can thus be
concluded thatτ can be varied in the window of 0.025 < τ < 0.075, for obtaining computational gain at the
expense of acceptable errors.

Figure6 compares the computational gains obtained using temporal coherence on the GPU and CPU based
simplification [9] approaches with the baseline computed on CPU (see Table1). The main observations and
respective analysis from the Figure6 are explained below.

(i.) The computational speed-up factor obtained using temporal coherence on GPU is in the range of 4.7 to 43.1
and increases with the number of Monte Carlo runs. The increase in the speed-up can be attributed to the
fact that the main computational cost of GPU operations is the data transfer between GPU and CPU. In the
USV simulation, the data of state variables and the system matrices need to be transferred from GPU to
CPU which is a constant time operation. When the number of runs is less, the appropriated compute time
is larger whereas for large number of Monte Carlo runs the cost of memory transfer reduces and hence, the
speed-up factor increases.

(ii.) The computational speed-up factor due to temporal coherence over GPU baseline ranges from 1.2 to 3.1.

(iii.) The error associated with the model simplification performed on GPU and CPU is computed by taking the
mean squared percentage error between the time series of thecomputed forces using the simplified method
and the baseline method [9]. The model simplification based on temporal coherence implemented on GPU

14

0 0.025 0.05 0.075 0.1
1

1.5

2

2.5

3

3.5

4

Threshold τ (m)

S
pe

ed
up

 o
ve

r
G

P
U

 b
as

el
in

e

(a) Computing speed-up over GPU baseline vs threshold.

0 0.025 0.05 0.075 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Threshold τ (m)

M
ea

n
S

qu
ar

e
F

or
ce

 E
rr

or
 (

%
)

(b) Variation of mean square force error with threshold.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.000 0.025 0.050 0.075 0.100
Threshold (m)

D
is

ta
nc

e
fr

om
 n

om
in

al
 p

oi
nt

 (
m

)

(c) Variation of distance from nominal point vs threshold.

−80

−60

−40

−20

0

20

40

60

80

0.000 0.025 0.050 0.075 0.100
Threshold τ (m)

F
in

al
 o

rie
nt

at
io

n
an

gl
e

(d
eg

re
es

)

(d) Variation of orientation from nominal point vs threshold.

Figure 5: Model simplification results of GPU based temporalcoherence.

0.5 1 2 4 8 16 32 64 128 256 512
0

5

10

15

20

25

30

35

40

45

C
om

pu
ta

tio
na

l s
pe

ed
up

 fa
ct

or
 o

ve
r b

as
el

in
e

No. of simultaneous runs (M)
 GPU acceleration
 CPU based simplification (C=50) - avg. error w.r.t baseline 1.25 % [9]
 GPU and temporal coherence based simplification tau=0.075 () - avg. error w.r.t baseline 1.04 %

Figure 6: Results of GPU acceleration.

led to an error of 1.04% for the thresholdτ = 0.075 anddτ = 0.1. Also, the figure shows variation of
computational speed-up using model simplification algorithms based on clustering and temporal coherence
on CPU [9] for simplification parametersC = 60,τ = 0.070, anddτ = 0.1. The approximation parameters
C, τ, anddτ are chosen such that the errors due to GPU and CPU based simplification is similar, for fair
comparison of associated speed-up in each case. Model simplification performed on CPU lead to an average
factor of speed-up of 6.4 and average force error of 1.25% over the CPU baseline. It can be seen in Figure6
that for single run the CPU based simplification approach outperforms the purely GPU based approach by
a factor of 1.5 and for two runs the CPU based simplification approach is better than purely GPU based

15

approach by a factor of 1.1. Again the reason is the appropriation of computing time spent on the constant
time data transfer operations over larger number of runs. Itis thus evident that using purely GPU based
approach may not be enough in applications in which a single USV needs to be run in a VE, as model
can become more complex, stretching the GPU to its limits. Inapplications, where some error is tolerable,
model simplification can significantly speed-up the application at the cost of small errors.

(iv.) For larger number of runs, which are pertinent to applications such as transition probability estimation, GPU
based approach gives very high speed-up factor (in case of Figure6, about 43.1 with average mean square
force error of 1.04%).

(v.) Figure6 also shows that the computing speed-up due to temporal coherence, gradually saturates as the
number of simultaneous runs increases. The reason is that the possibility of many heighfields being less
than the threshold simultaneously reduces as the number of heightfields increase.

5. Application of Generated State Transition Map in Trajectory Planning of USVs

In this section we present the application of state transition probabilities obtained from model simplification
techniques, developed in Section4 in the area of trajectory planning of USVs.

5.1. MDP Formulation

In this section we present the MDP formulation for the trajectory planning problem and the algorithms to
compute various components of the MDP.

5.1.1. State-Action Space Representation
For the dynamics computations, the state of the USV is definedas an augmented vector of pose and velocity

according to Equation7. The sizes of the vectors representing pose and velocity are6 each, making the size of
the state vector as 12. In addition, the USV state-action space is continuous and it is very difficult to search an
optimal policy, in such a high dimensional and continuous space. In this section we present the state-action space
dimension reduction and a suitable discretization to pose the problem of trajectory planning of USVs as a MDP.

The motion goals for the USVs are usually specified in terms ofthe target pose
[

x, y, θ
]T) and the target velocity

[

vx, vy, ωz

]T
on the ocean’s nominal water plane. This means that the statespace for the MDP can be reduced to

[

x, y, θ, vx, vy ωz

]T
. During operation the velocity of USVs do not change significantly during the operations and

that justifies the choice of the constant desired velocity ofthe boat. Also we tuned the PID controller such that the
angular velocity is kept within a set bound. The sway velocity and the angular velocities in the roll and the pitch
directions are generally very small and can be ignored in theMDP state space. Nevertheless, the transition model
computation is performed using all the 12 DOFs. The state space for the planning purposes in this paper is thus,
reduced to a 3-tuple given by Equation10.

s=
[

x yθ
]T (10)

where (x, y) are the coordinates of the USV’s CG in theXY plane, andθ is the orientation of the boat in the
XY plane.

We chose the grid dimension to be 15.0 m (USV length is nearly equal to 12m). The orientation discretization
is chosen to be 0.524rad. The state space is depicted in Figure7, in which theXY plane contains the location of
the CG and theθ axis denotes the orientation of the boat. Pose of the boat in theXY plane is shown in Figure7(a)
and the corresponding location in the 3-D state space is shown in Figure7(b).

The action space is discretized as a set of relative pose commands from an initial state. We chose the set
of relative final pose as 7 radial pose vectors having radial distance of 30.0 m with final desired steering angles
varying from−2.142 to 2.142rad in the increments of 0.428rad. We chose the desired path lengths and the
steering angles by first running the boat for 10 s along polar directions. Using this technique we generated a set of
7 waypoints which sufficiently cover the space around the boat and are dynamically reachable in 10 s.

16

(a) Typical pose of USV in XY
plane.

(b) Location of USV in state
space.

0 5 10 15 20 25 30
−25

−20

−15

−10

−5

0

5

10

15

20

25
Action 7

Action 6

Action 5

Action 4

Action 3

Action 2
Action 1

(c) Action discretization.

Figure 7: State-action space of MDP.

Figure 8: State transition map computation.

5.1.2. State Transition Map Computation
The state transition map for the continuous space was expressed in the form of Equation7. In this section we

shall describe the computation scheme to determine the state transition map for the given USV in the discrete state
space. We first present the definition of the state transitionprobability.

Definition 3 Given an initial statext and an actionut at timet, the probabilityp(xt+∆t|xt, ut) of ending up in
the statext+∆t is called the state transition probability. We assume that the time taken to execute the actionut is∆t.

Figure8 shows a USV situated initially in the statext. When an actionut is applied to it for 256 sample runs,
the trajectories traced by the USVs are shown in the figure. The USVs trace a slightly different trajectory for each
sample run due to the ocean wave and USVs interaction force asexplained before (see Equation4). The variation
in the resulting states for a given initial state and an action yields a probability distribution over the resulting states.

We use a data structure similar to state lattice [4] to consider the dynamics but enhance it by embedding the
information of the state transition probabilities in the arcs of the state lattice and then make use of the stochastic
dynamic programming to solve the problem of trajectory planning under the motion uncertainty. The steps to
compute the state transition map are described below.

Algorithm 3 - State transition map computation
Input

(a.) Set of trajectoriesT = (T1,T2, ...,TP) for a given action setΥ = (U1,U2, ...,UP) using Algorithm 1 and 2,

(b.) List of discretized statesS = [s1, s2, ..., sL]T representing the region of USV operation.
17

Output State transition map.
Steps

(i.) Perform geometric transformation of each trajectory in T. Figure8 shows a portion of the state space
with the rectangular grids representing region on the nominal water plane, while the layers representing the
orientation of the vehicle that vary from 0 to 2π rad. For each simulation run (beginning fromsi and taking
actionu j), the USV ends up in different states, shown by crosses in Figure8. Statese represents the nominal
ending state under the actionu j when there is no environmental disturbance.

(ii.) Construct graph by connecting the states (nodes) reachable from another states (nodes) using the sample
actions (arcs) inT.

(iii.) Determine the transition probabilities by finding out the ratio of the number of connections between the two
connected states and the total sample count of the actions taken. In Figure8, let the statesj be connected to
the statesi for n(sj) times out ofN sample runs. Compute the probabilitypi j of transition from statesi to

statesj usingpi j =
n(sj)

N .

(iv.) Return the state transition map.

In this way, the state transition map is obtained, whose nodes are the states and the arcs are the dynamics
constraints. Each connection has a probability associatedwith it, due to the system dynamics and the presence of
uncertainty due to ocean waves. It should be noted that the maximum number of children nodes of a given parent
node, for a state space withL nodes can be up toL based on the variations in the samples of the action and levelof
uncertainty in the environment. This makes the data structure very flexible in the sense of capturing the dynamics
constraints and the environmental uncertainty for extremesituations such as rough sea-state.

5.1.3. Reward Function
The final element of MDP is the immediate reward for transitioning from a given state to another state by

taking an action. The time spent by the USV to perform an action, can be determined by the length of the
trajectory traversed by it. This entails that larger the length of the trajectory, smaller should be the reward for the
action, generating the trajectory, and thus, we should consider the negative value of the trajectory length as the
reward. We chose the negative of the average length of theS trajectories traversed by the USV for each action in
the control set to determine the reward.

5.2. Results of Trajectory Planning

For the given action setΥ described in Section5.1.1, we determine the set of trajectoriesT, using Algorithm
1 and 2, for the sea-states 3 and 4. The average wave height, for the sea-state 3, ranges from 0.5m to 1.25
m, whereas, for the sea-state 4, the average wave height ranges from 1.25m to 2.5m [7]. The resulting set of
trajectories, for 256 Monte Carlo simulation runs is shown in Figure9. The variation in the resulting trajectories
due to different actions in the action set is shown in Figures9(a) and 9(b) for sea-state 3 and 4 respectively.
Variations in the final orientation in each Monte Carlo run due to ocean uncertainty for various actions are shown
in Figures9(c) and 9(d). The variations in the trajectories for the sea-state 4 is larger compared to that for the
sea-state 3 due to the higher average ocean wave height. We used τ = 0.075 anddτ = 0.1 to obtain Figure9.
The time taken to compute the set of trajectories for each sea-state was 9.1 minutes. We chose sample size of 256
because the variability of the pose data can be captured using a sample size of around 256. This is illustrated in
Figure10.

The MDP formulated in the Section5.1can be solved using numerous algorithms including the valueiteration,
policy iteration, hierarchical techniques, approximate techniques, etc. [69]. We chose the value iteration for com-
putation of the solution. The details of the value iterationalgorithm could be found in many references including
[1, 3, 69]. The policies for each sea-state are computed using the value iteration over the obtained respective state
transition maps. The optimal policies are then used for determining the trajectory to the target. Even if, the USV
is deviated from planned trajectory (mainly, the orientation is changed significantly in high sea-state) due to forces
caused by ocean waves, the computed policy can be used to regenerate an optimal trajectory to the target state.
The obtained trajectory is optimal given the uncertainties(caused by ocean waves and unmodeled effects such as
the variations in the angular velocities and the linear velocity due to the implemented PID controller limitations).
The dynamics based motion model developed in this paper includes these variations in the transition probability.
The transition probability is then used to compute the optimal policy in the MDP framework, which has been
proved by the researchers to yield global optima [2, 69]. It should be noted that the optimality is achieved in the

18

0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

Y
 (m

)

X (m)

Action 1

Action 2

Action 3

Action 4

Action 5

Action 6

Action 7

(a) Trajectories for each action computed at sea-state 3.

0 5 10 15 20 25 30
−30

−20

−10

0

10

20

30

X (m)

Y
 (m

)

Action7

Action 4

Action2

Action 3

Action 5

Action 6

Action 1

(b) Trajectories for each action computed at sea-state 4.

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7

F
in

a
l o

ri
e

n
ta

tio
n

 (
ra

d
)

(c) Final orientations for each action computed at sea-state 3.

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7

F
in

al
 o

rie
nt

at
io

n
(r

ad
)

(d) Final orientations for each action computed at sea-state 4.

Figure 9: Control set computed for different sea-states.

0 50 100 150 200 250 300 350
0

1

2

3

4

5
 Mean
 Median
 Quartile 1
 Quartile 3

D
is

ta
nc

e
fro

m
 n

om
in

al
 p

oi
nt

 (m
)

Sample count

(a) Variation in sample median and quartile distance from
nominal position.

0 50 100 150 200 250 300 350
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

 Mean
 Median
 Quartile 1
 Quartile 3

Fi
na

l o
rie

nt
at

io
n

(d
eg

re
es

)

Sample count

(b) Variation in sample median and quartile orientation
from nominal orientation.

Figure 10: Variation in sample distance and orientation from nominal pose vs sample size.

resolution sense, meaning that the chosen resolution of thestate-action space influences the achieved optimality.
Finer the resolution better will be the optimal solution, but greater will be the computational complexity.

The resulting trajectories for sea-states 3 and 4 are shown in Figure11. The origin and target orientation
of the vehicle isπ2 . In case of sea-state 3, a shorter and riskier trajectory (through a narrow passage in the
midst of obstacles) is computed by the approach discussed inthis paper as shown in Figure11(a). In case of
sea-state 4 a longer but safer path is computed as shown in Figure 11(b). It should be noted that because of
the dynamics constraints built into the search graph through the motion primitives discussed in this paper, the
generated trajectories are always dynamically feasible. This is the reason that the trajectory in case of Figure11(b)

19

50 100 150 200 250 300

50

100

150

200

250

300

Origin

Target

Unmanned Boat

Desired
Final
Orientation

(a) Trajectory computed between origin and target states
at sea-state 3.

50 100 150 200 250 300

50

100

150

200

250

300

Origin

Target

Unmannned Boat

Desired
Final
Orientation

(b) Trajectory computed between origin and target states
at sea-state 4.

Figure 11: Executed trajectories obtained by using feedback plan for sea-states 3 and 4. The feedback plans are
computed using the algorithms developed in this paper

Table 2: Summary of computational performance obtained using GPU and temporal coherence based simplifica-
tion over CPU computations. Number of actions in action setP = 7 and number of simulation runsM = 256.

CPU Baseline GPU Baseline CPU with clus-
tering (C = 50)
and temporal
coherence
(τ = 0.070)

GPU with
temporal
coherence
(τ = 0.075)

Computation time
(min)

395.0 28.2 80.2 9.1

Speed-up factor over
CPU baseline

1.0 14.1 4.9 43.4

Error introduced (%) 0.0 0.0 1.25 1.04

bends near the target, as the vehicle needs to go down in orderto turn to the desired orientation ofπ2 . The
disturbances due to the ocean waves are computed during the simulation, which causes unpredictable deviations
in the trajectory. The computed policy makes it possible forthe USV to take best action to safely reach the target,
even after it gets deviated due to the unpredictable ocean waves. The data structure and the algorithms presented
in this paper, enables incorporating the effects of dynamics and uncertainty in ocean waves, in the computation of
state transition map, helping in performing physics-awaretrajectory planning.

The comparison of computational performance of GPU and CPU based model simplification techniques are
shown in Table2. The time taken to perform Monte Carlo simulations of the USVdynamics to compute state
transition map using the algorithm developed in this paper was 9.1 minutes. It should be noted that the CPU
baseline was computed by implementing the parallel version(using OpenMP) of the simulator code reported in
Ref. [9]. The overall speed-up using GPU in conjunction with temporal coherence based model simplification
technique was by a factor of 43.4 by introducing an error of 1.04%. The number of states were chosen as 4800
(20× 20× 12) and the number of actions as 7. The value iteration took 28s to converge when computed on the
computed state transition map.

6. Conclusions

In this paper, we presented GPU based algorithms to compute state-transition probabilities for USVs using 6
DOF dynamics simulations of interactions between ocean-wave and vehicle. We used the obtained state transition
model in standard MDP based planning framework to generate physics-aware trajectory plans. We extended the
dynamics model for USV simulation, reported in Ref. [9], to incorporate multiple wave components and random
phase lags in ocean waves. The approach described in this paper is flexible and is capable of handling any USV

20

geometry, dynamics parameters, and sea-state. We developed GPU based algorithm to perform fast Monte Carlo
simulations to estimate state transition probabilities ofUSVs operating in high sea-states. We further improved
the computational performance by developing model simplification algorithm based on temporal coherence. The
overall computational speed-up obtained is by a factor of 43.4 by introducing a simulation error of 1.04% over the
CPU baseline. Transition probabilities can be computed within 9.1 minutes by using the algorithms described in
this paper. The paper also presents a case study to demonstrate the application of the developed state transition
map to generate physics-aware trajectory plans for sea-states 3 and 4 in MDP based planning framework.

A limitation of the approach is that we use potential flow theory based model, which is not suitable for simulat-
ing planing phenomenon occurring in fast moving boats. The approach presented in this paper, however, is flexible
to incorporate any other fluid flow model if available, to compute state transition model that can subsequently be
used in trajectory planning. Another limitation is that thecurrent framework is only capable of handling dynamic
environmental disturbances with static obstacles, such asislands and shorelines. The trajectory planner, however,
cannot handle dynamic obstacles with a sufficient efficiency, and a faster replanning approach can be used to tackle
with this issue [70].

References

[1] S. M. LaValle. Planning algorithms.Cambridge University Press, Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.
[2] M. L. Puterman.Markov decision processes: Discrete stochastic dynamic Programming.John Wiley & Sons, Inc., New York, NY, USA,

1st edition, 1994.
[3] S. Thrun, W. Burgard, and D. Fox.Probabilistic robotics. MIT Press, 2005.
[4] M. Pivtoraiko, R. A. Knepper, and A. Kelly. Differentially constrained mobile robot motion planning in state lattices.Journal of Field

Robotics, 26(3):308–333, 2009.
[5] T. Schouwenaars, B. Mettler, E. Feron, and J. P. How. Robust motion planning using a maneuver automation with built-in uncertainties.

In American Control Conference, 2003. Proceedings of the 2003, volume 3, pages 2211 – 2216 vol.3, june 2003.
[6] O. M. Faltinsen.Sea loads on ships and offshore structures.Cambridge University Press, Cambridge, New York., 1990.
[7] T. I. Fossen.Guidance and control of ocean vehicles.Wiley, Chicester, England, 1994.
[8] P. Krishnamurthy, F. Khorrami, and S. Fujikawa. A modeling framework for six degree-of-freedom control of unmannedsea surface

vehicles. InProc. and 2005 European Control Conference Decision and Control CDC-ECC ’05. 44th IEEE Conference on, pages
2676–2681, December 12–15, 2005.

[9] A. Thakur and S. K. Gupta. Real-time dynamics simulationof unmanned sea surface vehicle for virtual environments.Journal of
Computing and Information Science in Engineering, 11(3):031005, 2011.

[10] S. P. Singh and D. Sen. A comparative linear and nonlinear ship motion study using 3-D time domain methods.Ocean Engineering,
34(13):1863 – 1881, 2007.

[11] J. Betz. Solving rigid multibody physics dynamics using proximal point functions on the GPU. Master’s thesis, Rensselaer Polytechnic
Institute, Troy, New York, 2011.

[12] J. Pan and D. Manocha. GPU-based parallel collision detection for real-time motion planning. In David Hsu, Volkan Isler, Jean-Claude
Latombe, and Ming Lin, editors,Algorithmic Foundations of Robotics IX, volume 68 ofSpringer Tracts in Advanced Robotics, pages
211–228. Springer Berlin/ Heidelberg, 2011.

[13] W. L. D. Lui and R. Jarvis. Eye-Full tower: A GPU-based variable multibaseline omnidirectional stereovision system with automatic
baseline selection for outdoor mobile robot navigation.Robotics and Autonomous Systems, 58(6):747 – 761, 2010.

[14] J.T. Kider, M. Henderson, M. Likhachev, and A. Safonova. High-dimensional planning on the GPU. InRobotics and Automation (ICRA),
2010 IEEE International Conference on, pages 2515 –2522, may 2010.

[15] C. Batty, F. Bertails, and R. Bridson. A fast variational framework for accurate solid-fluid coupling.ACM Trans. Graph., 26(3):100,
2007.

[16] M. Carlson, P. J. Mucha, and G. Turk. Rigid fluid: animating the interplay between rigid bodies and fluid.ACM Trans. Graph.,
23(3):377–384, 2004.

[17] M. Becker, H. Tessendorf, and M. Teschner. Direct forcing for lagrangian rigid-fluid coupling.Visualization and Computer Graphics,
IEEE Transactions on, 15(3):493 –503, may-june 2009.

[18] M. Garcia, J. Gutierrez, and N. Rueda. Fluid-structurecoupling using lattice-boltzmann and fixed-grid FEM.Finite elements in analysis
and design, 47(8):906 – 912, 2011. Computational Mechanics and Design.

[19] R. Geist, C. Corsi, J. Tessendorf, and J. Westall. Lattice-boltzmann water waves. In George Bebis, Richard Boyle, Bahram Parvin,
Darko Koracin, Ronald Chung, Riad Hammoud, Muhammad Hussain, Tan Kar-Han, Roger Crawfis, Daniel Thalmann, David Kao, and
Lisa Avila, editors,Advances in visual Computing, volume 6453 ofLecture Notes in Computer Science, pages 74–85. Springer Berlin/
Heidelberg, 2010.

[20] M. Geveler, D. Ribbrock, D. Goddeke, and S. Turek. Lattice-boltzmann simulation of the shallow-water equations with fluid-structure
interaction on multi- and manycore processors. In Rainer Keller, David Kramer, and Jan-Philipp Weiss, editors,Facing the Multicore-
Challenge, volume 6310 ofLecture Notes in Computer Science, pages 92–104. Springer Berlin/ Heidelberg, 2011.

[21] R. Beck and A. Reed. Modern seakeeping computations forships. InTwenty-Third Symposium on Naval Hydrodynamics. Naval Studies
Board (NSB), 2001.

[22] J. Craighead, R. Murphy, J. Burke, and B. Goldiez. A survey of commercial open source unmanned vehicle simulators. In Robotics and
Automation, 2007 IEEE International Conference on, pages 852 –857, 2007.

[23] J. J. Gorski. Present state of numerical ship hydrodynamics and validation experiments.Journal of Offshore Mechanics and Arctic
Engineering, 124(2):74–80, 2002.

[24] K. H. Kim. Simulation of surface ship dynamics using unsteady RANS codes. InReduction of Military Vehicle Acquisition Time and
Cost through Advanced Modelling and Virtual Simulation, Paris, France, 2002.

[25] K. H. Kim, J. Gorski, R. Miller, R. Wilson, F. Stern, M. Hyman, and C. Burg. Simulation of surface ship dynamics. InUser Group
Conference, 2003. Proceedings, pages 188–199, June 2003.

21

[26] G. D. Weymouth, R. V. Wilson, and F. Stern. RANS computational fluid dynamics predictions of pitch and heave ship motions in head
seas.Journal of Ship Research, 49(18):80–97, June 2005.

[27] P. M. Carrica, R. V. Wilson, R. W. Noack, and F. Stern. Ship motions using single-phase level set with dynamic oversetgrids.Computers
& Fluids, 36(9):1415 – 1433, 2007.

[28] H. Ashrafiuon, K. R. Muske, and L. C. McNinch. Review of nonlinear tracking and setpoint control approaches for autonomous
underactuated marine vehicles. InAmerican Control Conference (ACC), 2010, pages 5203 –5211, 302010-july2 2010.

[29] M. R. Katebi, M. J. Grimble, and Y. Zhang. H∞ robust control design for dynamic ship positioning.Control Theory and Applications,
IEEE Proceedings, 144(2):110–120, Mar 1997.

[30] A. Loria, T. I. Fossen, and E. Panteley. A separation principle for dynamic positioning of ships: Theoretical and experimental results.
IEEE Transactions on Control Systems Technology, 8:332–343, 2000.

[31] F. Mazenc, K. Pettersen, and H. Nijmeijer. Global uniform asymptotic stabilization of an underactuated surface vessel. Automatic
Control, IEEE Transactions on, 47(10):1759–1762, Oct 2002.

[32] K. D. Do, Z. P. Jiang, and J. Pan. Underactuated ship global tracking under relaxed conditions.IEEE Transactions on Automatic Control,
47(9):1529–1536, Sep 2002.

[33] E. Lefeber, K.Y. Pettersen, and H. Nijmeijer. Trackingcontrol of an underactuated ship.Control Systems Technology, IEEE Transactions
on, 11(1):52–61, Jan 2003.

[34] T. I. Fossen and Ø. N. Smogeli. Nonlinear time-domain strip theory formulation for low-speed manoeuvering and station-keeping.
Modeling, Identification and Control, 25(4):201–221, 2004.

[35] P. J. Bandyk and R. F. Beck. Nonlinear ship motions in thetime-domain using a body-exact strip theory.ASME Conference Proceedings,
2008(48234):51–60, 2008.

[36] D. S. Holloway and M. R. Davis. Ship motion computationsusing a high Froude number time domain strip theory.Journal of Ship
Research, 50(1):15–30, 2006.

[37] J. N. Newman.Marine Hydrodynamics.MIT Press, Cambridge, MA, 1977.
[38] C. Goerzen, Z. Kong, and B. Mettler. A survey of motion planning algorithms from the perspective of autonomous UAV guidance.

Journal of Intelligent& Robotic Systems, 57:65–100, 2010. 10.1007/s10846-009-9383-1.
[39] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamicmotion planning.J. ACM, 40:1048–1066, November 1993.
[40] S. M. Lavalle and P. Konkimalla. Algorithms for computing numerical optimal feedback motion strategies.The International Journal of

Robotics Research, 20(9):729–752, 2001.
[41] E. Frazzoli, M.A. Dahleh, and E. Feron. Real-time motion planning for agile autonomous vehicles. InAmerican Control Conference,

2001. Proceedings of the 2001, volume 1, pages 43 –49, 2001.
[42] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.The International Journal of Robotics Research, 20(5):378–400,

2001.
[43] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Randomizedkinodynamic motion planning with moving obstacles.The International

Journal of Robotics Research, 21(3):233–255, 2002.
[44] R. Stelzer and T. Proell. Autonomous sailboat navigation for short course racing.Robotics and autonomous systems, 56(7):604–614,

JUL 31 2008.
[45] S. Suzuki. Online four-dimensional flight trajectory search and its flight testing.AIAA GNC Conference and Exhibit, 2005, 2005.
[46] M. Bennewitz, W. Burgard, and S. Thrun. Finding and optimizing solvable priority schemes for decoupled path planning techniques for

teams of mobile robots.Robotics and autonomous systems, 41(2-3):89–99, NOV 30 2002.
[47] S. Scherer, S. Singh, L. Chamberlain, and S. Saripalli.Flying fast and low among obstacles. InRobotics and Automation, 2007 IEEE

International Conference on, pages 2023 –2029, april 2007.
[48] E. Frazzoli, M.A. Dahleh, and E. Feron. A hybrid controlarchitecture for aggressive maneuvering of autonomous helicopters. In

Decision and Control, 1999. Proceedings of the 38th IEEE Conference on, volume 3, pages 2471 –2476 vol.3, 1999.
[49] A. Kelly, A. Stentz, O. Amidi, M. Bode, D. Bradley, A. Diaz-Calderon, M. Happold, H. Herman, R. Mandelbaum, T. Pilarski, P. Rander,

S. Thayer, N. Vallidis, and Ra. Warner. Toward reliable off road autonomous vehicles operating in challenging environments. The
International Journal of Robotics Research, 25(5-6):449–483, 2006.

[50] M. S. Branicky, S. M. LaValle, K. Olson, and Y. Yang. Quasi-randomized path planning. InRobotics and Automation, 2001. Proceedings
2001 ICRA. IEEE International Conference on, volume 2, pages 1481 – 1487, 2001.

[51] A. Elnagar and A. Hussein. On optimal constrained trajectory planning in 3d environments.Robotics and Autonomous Systems, 33(4):195
– 206, 2000.

[52] A. Richards and J.P. How. Aircraft trajectory planningwith collision avoidance using mixed integer linear programming. InAmerican
Control Conference, 2002. Proceedings of the 2002, volume 3, pages 1936 – 1941 vol.3, 2002.

[53] F. Borrelli, D. Subramanian, A.U. Raghunathan, and L.T. Biegler. MILP and NLP techniques for centralized trajectory planning of
multiple unmanned air vehicles. InAmerican Control Conference, 2006, page 6 pp., june 2006.

[54] M. G. Earl and R. D’Andrea. Iterative MILP methods for vehicle-control problems.Robotics, IEEE Transactions on, 21(6):1158 – 1167,
dec. 2005.

[55] C. Colombo, M. Vasile, and G. Radice. Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic
programming.Celestial Mechanics and Dynamical Astronomy, 105:75–112, 2009. 10.1007/s10569-009-9224-3.

[56] T. Howard and A. Kelly. Optimal rough terrain trajectory generation for wheeled mobile robots.International Journal of Robotics
Research, 26(1):141–166, February 2007.

[57] O. Purwin and R. Andrea. Trajectory generation and control for four wheeled omnidirectional vehicles.Robotics and Autonomous
Systems, 54(1):13 – 22, 2006.

[58] S. Russell and P. Norvig.Artificial intelligence: A modern approach.Prentice Hall, 2009.
[59] M. Likhachev, G. Gordon, and S. Thrun. Planning for Markov decision processes with sparse stochasticity.Advances in Neural

Information Processing Systems (NIPS), 17, 2004.
[60] D. Ferguson and A. Stentz. Focussed processing of MDPs for path planning. InProceedings of the 16th IEEE International Conference

on Tools with Artificial Intelligence (ICTAI’04), pages 310–317, 2004.
[61] S. Sanner, R. Goetschalckx, K. Driessens, and G. Shani.Bayesian real-time dynamic programming. InProceedings of the 21st Interna-

tional Joint Conference on Artifical Intelligence, pages 1784–1789. Morgan Kaufmann Publishers Inc., 2009.
[62] G. Casalino, A. Turetta, and E. Simetti. A three-layered architecture for real time path planning and obstacle avoidance for surveillance

USVs operating in harbour fields. pages 1 –8, May 2009.
[63] M. R. Benjamin, J. A. Curcio, and P. M. Newman. Navigation of unmanned marine vehicles in accordance with the rulesofthe road. In

22

Robotics and Automation, 2006. ICRA 2006. Proceedings 2006IEEE International Conference on, pages 3581 –3587, May 2006.
[64] R. A. Soltan, H. Ashrafiuon, and K. R. Muske. State-dependent trajectory planning and tracking control of unmannedsurface vessels. In

American Control Conference, 2009. ACC ’09., pages 3597 –3602, 2009.
[65] B. Xu, A. Kurdila, and D. J. Stilwell. A hybrid receding horizon control method for path planning in uncertain environments. In

Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 4887 –4892, 2009.
[66] M. Sandler, A. Wahl, R. Zimmermann, M. Faul, U. Kabatek,and E. D. Gilles. Autonomous guidance of ships on waterways.Robotics

and Autonomous Systems, 18(3):327 – 335, 1996.
[67] M.T. Wolf, L. Blackmore, Y. Kuwata, N. Fathpour, A. Elfes, and C. Newman. Probabilistic motion planning of balloonsin strong,

uncertain wind fields. InRobotics and Automation (ICRA), 2010 IEEE International Conference on, pages 1123 –1129, May 2010.
[68] I. Zohar, A. Ailon, and R. Rabinovici. Mobile robot characterized by dynamic and kinematic equations and actuator dynamics: Trajectory

tracking and related application.Robotics and autonomous systems, 59(6):343–353, JUN 2011.
[69] W. Powell. Approximate dynamic programming: Solving the curses of dimensionality.Wiley, 2007.
[70] P. Svec, M. Schwartz, A. Thakur, and S. K. Gupta. Trajectory planning with look-ahead for unmanned sea surface vehicles to handle

environmental disturbances. InIntelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, September 2011.

23

	Introduction
	Literature Review
	Fluid-Rigid Body Interaction Simulation
	Physics-Aware Trajectory Planning

	Problem Statement and Solution Approach
	Problem Statement
	Approach

	Dynamics Simulation of USVs
	Motion Equations: Interaction Between USVs and Ocean Waves
	Uncertainty in the Motion Model
	Simulator Implementation on GPU
	Simulation Results of GPU Based Parallelization
	Model Simplification on GPU
	Results of Model Simplification on GPU

	Application of Generated State Transition Map in Trajectory Planning of USVs
	MDP Formulation
	State-Action Space Representation
	State Transition Map Computation
	Reward Function

	Results of Trajectory Planning

	Conclusions

