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Abstract

In this paper, we introduce an indirect pushing based technique for automated
micromanipulation of biological cells. In indirect pushing, an optically trapped glass
bead pushes a freely diffusing intermediate bead that in turn pushes a freely diffus-
ing target cell towards a desired goal. Some cells can undergo significant changes
in their behaviors as a result of direct exposure to a laser beam. Indirect pushing
eliminates this problem by minimizing the exposure of the cell to the laser beam.
We report an automated feedback planning algorithm that combines three motion
maneuvers, namely, push, align, and backup for micromanipulation of cells. We
have developed a dynamics based simulation model of indirect pushing dynamics
and also identified parameters of measurement noise using physical experiments.
We present an optimization-based approach for automated tuning of planner pa-
rameters to enhance its robustness. Finally, we have tested the developed planner
using our optical tweezers physical setup and carried out a detailed analysis of the
experimental results. The developed approach can be utilized in biological exper-
iments for studying collective cell migration by accurately arranging the cells in
arrays without exposing them to a laser beam.

*All correspondence should be addressed to skgupta@umd.edu.
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1 Introduction

Recent advancements in robotics have provided a significant boost to many biomedical
research applications (Banerjee and Gupta, 2013) such as controlled non-invasive drug
delivery (Yim et al., 2013), non-invasive intra-ocular surgery (Bergeles et al., 2010), ef-
fective diagnosis (Ergeneman et al., 2012), automated cell injection (Sakaki et al., 2009),
etc., where the precision and operational speed are the key performance criteria. The
ability to manipulate cells is necessary for many studies of different biological processes
such as embryogenesis, wound healing, or metastasis (Vedula et al., 2012; Weijer, 2009;
Ingber, 2006), where the cells need to be quickly arranged in arrays to be able to ob-
serve their evolving motility. In addition, various biological applications such as cell
transport (Wu et al., 2010, 2011; Hu and Sun, 2011), sorting or separation (Xie et al.,
2005; Chapin et al., 2006; Gossett et al., 2010), estimation of mechanical properties of
cells (Tan et al., 2010), cell-cell interaction (Ashkin and Dziedzic, 1987; McNerney et al.,
2010), etc. require accurate and localized micro-manipulation of cells or other living sys-
tems. Unfortunately, cell manipulation is mostly achieved manually; hence, the timing
and precision of the experiments are significantly compromised, which leads to lower suc-
cess rate and higher operational time. Moreover, certain micromanipulation operations
cannot be achieved manually, which restricts the application scope of the setup. Automat-
ing the manipulation process using a robotic technology can overcome these challenges of
manual cell manipulation.

Common techniques utilized for cell manipulation include gradient centrifugation
(Sims and Anderson, 2008; Tavalaee et al., 2012), micro-fluidic techniques (Bose et al.,
2012), micropipette techniques (Zhang et al., 2012; Shojaei-Baghini et al., 2013), mag-
netic activated cell sorting (Pawashe et al., 2009; Frutiger et al., 2009; Schriebl et al.,
2012), etc. For most of the described techniques, a large sample size may be needed.
Moreover, precise and localized manipulation of a given cell may not be possible using
these techniques.

Nowadays, optical tweezers (OT) are utilized for performing a single cell microma-
nipulation. One of the notable advantages of OT based micromanipulation is that it
can be utilized for exerting a controlled force in the range of 0.1-100 pN on particles of
sizes ranging from 10 nm to 10 ym (Neuman and Nagy, 2008). Optical tweezers are thus
considered as a useful tool for cell manipulation as many cells belong to this size range.

Cells can be precisely manipulated using optical tweezers but photo-damage is inflicted
upon them due to optical trapping (Ashkin and Dziedzic, 1989). The underlying mecha-
nism for photo-damage has been proposed to be due to the creation of reactive chemical
species (Liu et al., 1996; Svoboda and Block, 1994), local heating (Liu et al., 1996), two-
photon absorption (Konig et al., 1995, 1996), and singlet oxygen through the excitation of
a photo-sensitizer (Neuman et al., 1999). It is commonly speculated that trapping using
laser at infrared wave length does not significantly inflict photo-damage. Aabo et al.,
however, experimentally demonstrated that under continuous, as well as pulsed irradi-
ation with 1070 nm infrared laser, the growth rate of Saccharomyces cerevisiae reduces



with an increase of laser power (Aabo et al., 2010). In their experiments, laser exposure
of 0.7 mW had an insignificant effect on cell growth, however, at 2.6 mW the cells ceased
to grow. In another experimental study, Ayano et al. showed that the growth rate of F.
coli cell gets adversely affected at a dose of 0.5 J of 1064 nm laser (Ayano et al., 2006).
They also showed that cell division capability of E. coli gets affected at even lower doses
than 0.35 J of 1064 nm laser. Rasmussen et al. found out that pH of both FE. coli and
Listeria declined at trapping powers as low as 6 mW (Rasmussen et al., 2008).

Thus, despite of optical tweezers being promising tools for accurate manipulation of
cells, the devastating photo-damage due to direct laser exposure hinders its effective-
ness in cell micromanipulation. In the past, our group used gripper formations made of
dielectric silica beads to grip and transport yeast cells (Koss et al., 2011). The bead for-
mation can be made from biodegradable polymeric microbeads, and thus can be used for
targeted drug-cell interaction study (Steager et al., 2013). This gripper formation based
technique significantly reduced laser exposure of the gripped cells during transportation
as compared with direct trapping. However, direct contact of the target cell with optically
trapped beads still lead to some laser exposure due to the cone shape of the optical trap
(Koss et al., 2011).

In order to further reduce the laser exposure to the target cell, we propose the use
of an intermediate glass bead positioned in between an optically trapped glass bead and
the target cell (Wang et al., 2013). The proposed bead formation can be regarded as a
non-prehensile robotic manipulator actuated by optical force. Recent advances in the field
of user interfaces (such as iPad® applications for optical tweezers control) have proven
to be very useful (Leach et al., 2006; Graydon, 2011) in user-guided micromanipulation.
However, manual indirect pushing of cells using optically trapped micro-beads is a time
consuming process. In particular, manual micromanipulation is difficult to be used ef-
fectively due to the inherent instability of the contact points between indirectly pushed
beads and the cells.

In this paper, we combine OT technology with an image guided robotic technique
to perform cell micromanipulation. In particular, we report a feedback motion planning
approach for indirect pushing of cells using the proposed bead formation. The approach is
based on three main components, namely, (1) motion simulation of ensemble of particles
in the bead formation with sensing and Brownian noise, (2) noise handling based on
Kalman filtering (LaValle, 2006), and (3) feedback motion planning for indirect pushing.
We also present an automated approach for tuning parameters of the developed feedback
planner to deal with different turning angles of the ensemble. We use a genetic algorithm
to optimize the parameters to make the feedback planner robust to sensing and motion
uncertainties.

This paper builds on our previous demonstration in which we showed the feasibility
of the indirect pushing idea (Thakur et al., 2012). We present the following new results.

e We have incorporated trap dynamics into the simulation model of indirect pushing
(see Section 4.1). We have used the new model to optimize the parameters of the
feedback planner (see Section 5.2) to further improve its robustness. In addition, the
new model has also allowed us to improve the Kalman filtering based localization
(i.e., the prediction step of the Kalman filter) of the particles.

e We have experimentally observed that beads stick to each other during pushing
due to optical as well as Van der Waals forces (Thakur et al., 2012). This sticking
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becomes prominent with the presence of cell culture in the solution. The stuck beads
are difficult to recognize in the image as their boundaries merge. This leads to a high
failure rate of the previously developed micromanipulation technique in experiments.
We have developed a new set of maneuvers (see Section 5.1) to make the feedback
policy more robust. In particular, we have introduced a backup maneuver to be
able to preemptively detach the beads before they start sticking to each other.

We have also developed a new type of the align maneuver. The earlier version of
the align maneuver utilized only translation motion to position the effector bead in
respect to the intermediate bead. This was highly inefficient, and sometimes the
execution of the maneuver interfered with the Brownian motion of the intermediate
bead. We have introduced circular motion in the align maneuver which minimizes
this interference.

We have introduced new parameters for the maneuvers and optimized them using
the simulation based approach as described in the paper. This has significantly
enhanced the speed, robustness, and precision of the feedback planner.

We report an improved method for experimentally determining the measurement
noise and dynamics parameters of the indirect pushing model (see Section 4.2).

We report detailed experimental results with actual yeast cells. In our previous
experiments, we used glass beads as surrogates for yeast cells (Thakur et al., 2012).
In the new set of experiments, the use of yeast cells has revealed several issues
that were not present in the former setup. In particular, detection of a cell is
more difficult compared to the detection of a bead in the image. This is because the
transparent nature of the cell makes it difficult to detect it in phase contrast imaging
in comparison to detecting a bead that has clearly visible outer white annular part.
In addition, due to the lower density of the cell and thus its slightly lower mass
compared to the silica bead, the cell has increased tendency to transition into a
different 7 plane during pushing. As a consequence, the image of the cell becomes
blurred which prevents the image processing algorithm to reliably recognize it. We
have improved the localization technique for predicting the position of the cell and
beads using a combination of Hough transform and Kalman filtering (see Section
4.2). The technique utilizes the new model of indirect pushing to significantly
improve this prediction.

Finally, the beads have the same diameter but this may differ for cells. The newly
developed feedback planner (see Section 5) allows us to reliably manipulate cells in
the range from 4 to 7 pm.

Related Work

There is a significant body of literature on pushing-based or non-prehensile manipulation
in the area of robotics and we present here some representative research papers. Mason
(Mason, 1986) reported a rule-based approach (i.e., an approach based on geometric
reasoning and physical parameters such as the coefficient of friction) for determining
the rotation direction of an object, which is pushed by a flat fence. Akella and Mason
(Akella and Mason, 1992) reported an approach for generation of complete, open loop,



pushing plans which do not require position information. Lynch (Lynch, 1999) proved
theorems to characterize polygonal part geometries which can be pushed along any desired
trajectory using open loop stable pushing. Rezzoug and Gorce (Rezzoug and Gorce, 1999)
presented a two-finger pushing approach using fixed contact points and solved the optimal
force distribution problem using a linear programming approach.

Pereira et al. (Pereira et al., 2004) addressed the problem of transporting a polygonal
object by multiple mobile agents using a combination of pushing and caging operations.
Li and Payandeh (Li and Payandeh, 2007) presented a sensor-less manipulation approach
for translating and orienting convex objects by a two-agent point-contact push. Igarashi
et al. (Igarashi et al., 2010) reported a dipole-based local control approach to push ob-
jects along a given path using dipole field based approach. Behren et al. (Behrens et al.,
2010) reported a dynamic model incorporating inertia and friction effects. Kopicki et al.
(Kopicki et al., 2009) have presented a probabilistic framework for learning and then pre-
dicting the motions of interacting rigid bodies in 3D. Cosgun et al. (Cosgun et al., 2011)
reported a heuristic based planning algorithm for placing convex objects on a cluttered
plane such as a table or floor using a sequence of pushing operations.

Recently, Cappelleri et al. (Cappelleri et al., 2012) reported an approach for coor-
dinated control of multiple micromanipulators for the use in 2D and 3D micromanip-
ulation tasks using a feature-defined (FD) micro-caging transport primitives. In the
micro-caging approach of Cappelleri et al. planning is not automated. Landolsi et al.
(Landolsi et al., 2012) reported nonlinear analysis of pushing based micro-manipulation
using Atomic Force Microscope (AFM).

There is a previous work in the area of automated path planning and cell transport
using OT. Banerjee et al. (Banerjee et al., 2010, 2012) used a partially observable Markov
decision process (POMDP) to formulate a path planning problem for OT to deal with the
dynamic nature of the environment and solved it using stochastic dynamic programming
(SDP). The trapping force for a particle displaced from the focal point of a laser is
described in (Banerjee et al., 2009; Hu and Sun, 2011; Bista et al., 2013). Chowdhury et
al. (Chowdhury et al., 2012b, 2011) developed both decision theoretic based and heuristic
planning approach for automated transport of cells inside an optical tweezers assisted
microfluidic chamber using direct trapping. Wu et al. (Wu et al., 2011) reported an
approach based on modified A* based global path planning automated cell transportation
using OT. Wu et al. used a PI control scheme to adjust motion velocity online in order to
maintain a cell within a laser trap. Chen et al. (Chen et al., 2013) developed a flocking
control algorithm to automatically transport a collection of cells trapped by OT towards
a predefined region.

Cells are vulnerable to direct pushing since the light cone of the laser beam overlaps
with the trapped cell (Koss et al., 2011). With the six bead indirect gripping approach,
the negative effect of the light cone on the cell is avoided (Chowdhury et al., 2012a;
Banerjee et al., 2011). Chowdhury et al. (Chowdhury et al., 2013, 2012¢) developed an
A* based approach for automated, indirect transport of cells using different types of
gripper formations.

To the best of authors’ knowledge, there is no automated micromanipulation technique
reported in the OT domain that utilizes indirect pushing. Here, indirect pushing refers
to the process of pushing a cell towards a goal location using a freely diffusing silica
bead which is eventually pushed by another optically trapped silica bead. On the other
hand, we use the term “indirect transport” in our previous works (Chowdhury et al., 2013,
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Figure 1: The trap T} should be controlled in such a way that it moves the effector bead
P, to push the intermediate bead P, in the bead formation and thereby indirectly pushes
the cell C' towards the goal .

2012c¢) to describe the manipulation of a cell using optically trapped silica beads that are
in direct contact with the cell. One of the main challenges encountered in the automated
pushing-based transport of cells is the uncertainty in the measurement of positions. Most
of the reported techniques in the area of pushing-based manipulation do not deal with
the sensing noise in position of a bead or cell. In this paper we report a simulation-
aided robust pushing-based manipulation technique and present results of experiments of
automated transport of yeast cells.

3 Overview

3.1 Problem Statement
Let,
e C be a cell located at zF,

Py be the effector bead of the bead formation that is situated at z% and trapped by
the optical trap T,

P, be the intermediate bead of the bead formation that is situated at x5, and

x4 be the goal location of the cell C.

The task is to compute a feedback plan that determines the motion of the trap for
the effector bead to push the intermediate bead P,, which in turn pushes the cell to its
desired goal x, (see Figure 1). During this process, it is compulsory that P, and C' do
not come in contact.

3.2 Overview of Approach

We adopt the following steps to solve the above task.

(i.) Develop a simulator based on kinematics and dynamics of the indirect pushing
operation to simulate the motion of particles in the bead formation, their mutual
interactions in terms of collisions and pushing, and the sensing noise.

(ii.) Perform experiments on the physical optical tweezers setup to identify measurement
noise.



(iii.) Utilize image processing and Kalman filtering based approach to estimate the posi-
tions of P, P, and C from the video stream obtained by CCD camera.

(iv.) Develop a feedback planner to automatically control the optical trap 77 that actuates
Py, which thereby pushes P, and thus imparts momentum to C' to move it towards
the goal z,.

(v.) Utilize optimization based approach to automatically tune parameters of the feed-
back planner so that the generated plans are robust to different sensor noise and
turning angles.

4 Simulation of Indirect Pushing

In this section, we present a kinematic and dynamic model of indirect pushing operation, a
simulation of the indirect pushing, and a parameter identification procedure to determine
sensor noise from physical experiments.

4.1 Model Description

We have made the following three assumptions in order to build a kinematic and dynamic
model of indirect pushing of particles in the bead formation.

(i.) We approximate the cells and glass beads as perfect spheres in the experiments
reported in this paper. Each spherical particle is optically trapped using the holo-
graphic optical tweezers in 3D. We, however, observed that most cells lie on the
bottom surface of the slide. Hence, their transport can be realized in 2D plane. We
approximate each spherical particle using a circle in the developed simulator. Since
all motions due to the movement of traps occur in the focal plane of the optical
tweezers, the described two-dimensional approximation is justified.

(ii.) We assume that the fluid flow around particles is laminar and hence with very low
Reynold number.

(iii.) We assume that the cells and beads are perfect rigid bodies, however, in general,
cells are not rigid bodies. In this paper, we are dealing with cell transportation,
which is a large scale motion of the order of few tens of microns as compared to
the cell size (around 5 pm). Small deflections due to the ”softness* of the cell wall
have negligible effect on such motions. We observed experimentally that yeast cells
behave like rigid bodies to an acceptable extent. Thus, for the sake of simplicity of
modelling we represent cells using perfect rigid bodies.

Let rg and r¢ be the radii of the circles representing a glass bead in the bead formation
and cell, respectively. We represent the positions of the beads Py, P, the cell C, and the
trap T' by x1, 22, ¢, and @44y, respectively. We denote the velocity of the particle P, as
V1 = l:1.

The equation of motion of the particle P, due to the influence of trapping force and
drag caused by the fluid medium is given by the Equation 1 (Wu et al., 2013).

maﬁ'l = Ftrap(ASL’) — Fdrag<l;1) (1)
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Figure 2: Trapping force model Wu et al. (2013).

In the above equation, m is the mass of Py, F},,, is the trapping force and is given by the
Equation 2 (see Figure 2).

| KiAz 0 < [[Az|| < zq
Firap(A) = { — KAz + ¢ ||Az| > o (2)

Here, Az = 21 — 44, is the directional vector between the center of the particle P,
and the trap T', K; and K5 are the trapping stiffness constants that are determined using
the method based on (Wu et al., 2013) as described in Section 4.2, and ¢ is a constant.
The drag force Fy,qy = b2 is proportional to the particle velocity ;. The drag coefficient
b is calculated as b = 67nrg, where n is the dynamic viscosity of the surrounding fluid
medium and rg is the radius of particle assuming it to be perfectly spherical. In past,
Singer et al. (Singer et al., 2001) also used similar drag force method to characterize the
trapping force on polystyrene beads as large as 10 pm.

In our experiments, the diameter of the beads used is 5 ym while the diameter of the
yeast cell varies approximately in the range 5 ym to 10 um. Also, the maximum speed
of these particles is limited by 10 £*. Thus, the Reynold number in case of the beads is
very low, which allows to ignore the inertial term m# from Equation 1 (Wu et al., 2013).
As a result, Equation 1 can be simplified to Equation 3.

Ftrap<Ax> - Fdrag (371) (3)

In Equation 3, z; is varying in continuous time ¢, i.e., as x;1(¢). For convenience of
implementation, we discretize time and represent z;(t) at different discrete time instants
using the notation z¥, where k denotes a discrete time instant. The speed v¥ = i of the
particle P; is determined by Equation 4. This accounts for an optical trap T located at
a distance of Az from the center of the particle.

(4)

Other particles that are in contact with the moving trapped particle get pushed due to
the transfer of momentum. Since we perform pushing actively using image feedback, we
can assume direct contact between the pushing and the pushed particle to be maintained
as long as the pushed particle keeps moving. This is also ascertained by the fact that due
to the viscous medium, the pushed particle stops moving almost instantaneously as soon
as its contact with the pushing particle breaks.

i {%A:p 0 < Az < x

vy = —KsAz+c
=EEe Ax > 1



The velocity of the particle P, imparted by the motion of P is given by v% at the
time step k (see Equation (5)).
k { & max (<vf,cf172> ,0) dy o, if || 2k — a2k ||< 2rp (5)

Ve =
? 0,0, otherwise,

where <v{€ , 621,2> represents dot product of the vectors v’f and 621,2 and a?Lg = % is the
unit vector along the normal direction of the contact point between P; and P;. The term
& = mﬂl represents ratio of masses m of the effector bead and m; of the intermediate bead.
Since, the effector and intermediate beads are of same size and material, m = m; and
hence we assume &, = 1. The component of momentum along the contact direction CZLQ
is only responsible for translation of P,. The component of momentum that is normal to
the contact direction &172 is responsible for rotational motion, which we can safely ignore
in case of cell transport application.

Equation (5) models the pushing action by taking a component of the momentum
along the direction of contact. The only component of velocity v¥ of the pushing bead
along aAll,g is transferred to the pushed particle. Similarly, the velocity of the cell v} at
the time instant k is given by Equation (6).

(6)

v(”} _ { & max (<v§, d27c> ,O) doc, if || x’é — 2k 1< rp+re

B 0,0]", otherwise,

where czg,c = ”izg%igu is the unit vector along normal direction of the contact point between
P, and C. & = %‘; is the mass ratio between the intermediate bead and the cell where
m; and m,. are the masses of the silica bead and yeast cell, respectively. The mass of
the spherical silica bead m,;, can be easily determined from the properties of the material.
For measuring the mass m.. of the cell we assumed the density of the cell to be similar to
water since approximately 70% of the cell is made up by water.

In general, Equations (5) and (6) can be extended to any number of effectors and
intermediate beads in the bead formation. However, in this paper, we consider only one
effector and intermediate bead for the sake of simplicity. The simulator can also simulate
noise due to the measurement errors in addition to the interactions due to collision. We
refer to the group of particles Py, P5, and C as an ensemble for the purpose of description.
We introduce some terminology below that is used in this paper.

Ensemble state (S* = {x’f , T8 ak, x’;}): Ensemble state is defined as a set containing

positions of effector bead (P;), intermediate bead (%), cell (C') and goal location z, at a
given discrete time step k.

k

Action (u*): An action u* = o at a given time step k is the velocity of the trap

T,.

State Transition (F): When a trap moves with velocity u* = v} at a given time
step k, the ensemble transitions from state S* to S¥*1 as shown in Equation (7).

SH = F (Sh ) (7)
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Figure 3: Physical experiment is performed to estimate a noise in the measured position
of a trapped bead. The bead is trapped using 8 mW laser power. We record measured
positions for 1000 time steps to estimate a covariance matrix of the measurement error.

4.2 System Identification

The positions of particles are measured by processing the video stream captured using a
CCD camera in our OT-based experimental setup. We use Hough transform to recognize
beads and cells. Due to the variations in the images obtained by the CCD camera,
the image processing and feature recognition introduces a measurement noise in position
estimation. In addition, Brownian motion of particles introduce process noise. In order
to measure the covariance of the measurement error, we trapped a bead with 8 mW laser
power and logged the measured position for 1000 time steps. Figure 3 shows the variation
of the measured position from the trap location. The measurement noise covariance
matrix determined from the data presented in Figure 3 is

v _ (106 045
— 1045 019

Since the laser power of 8 mW is sufficient to arrest the motion of the bead, the covariance
of the measured position can be considered as an estimation of the measurement noise for
the purpose of pushing. We utilized a random vector variate drawn from 2-dimensional
normal distribution with [0,0]7 as the mean vector and % as the covariance matrix for
simulating the measurement noise.

In order to deal with the noise, we utilized Kalman filtering (LaValle, 2006). Based on
the assumptions made in Section 4, we limit the maximum speed of the trap to ensure that
the trapped particle moves along with the trap. Due to this, a linear model developed
in this paper is sufficient for Kalman filtering. In general, for higher speeds, extended
Kalman filter can be used with non-linear motion models.

Significant computation time is needed for image processing operations, which may
introduce a delay in the execution of a control action. Such delay must be taken into
account in the simulator. We logged the time required for image processing for 1000
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Figure 4: Experimental estimation of the trap stiffness at the trap power of 5.63 mW.

time steps in a physical experiment. We then characterized this computation time as a
Gaussian variable with the mean of 0.1 s and standard deviation of 0.04 s. We simulated
the image processing time at each control time step by introducing a delay of random
time span drawn from a normal distribution with the same mean as well as the standard
deviation. Image processing performance largely depends on the processing speed of the
computer on which control and planning code is run.

We adjusted the speed of the trap to operate in the region of increasing gradient of
the trapping force (see Figure 2), i.e., Az < xg. The trapping force gradually decreases
beyond xy, where a particle cannot be reliably trapped. In order to measure the trapping
stiffness K in the region of increasing gradient, we programmed the motorized stage that
holds the particle to induce a speed on the fluid medium with respect to the laser trap.

In the experiment, we first trapped the particle with a particular laser power and
recorded its position. Then we induced a relative speed to the fluid medium by moving
the motorized stage with a fixed programmed speed and recorded the final position of the
same particle. The induced speed of the fluid medium would try to displace the particle
from the trap while trapping force would try to restore it back. Both the forces would
reach to the equilibrium at the position Az apart from the trap location.

From the recorded positions before and after moving the motorized stage, we could
compute the displacement Ax of the particle from the trap. The trapping force was
measured indirectly by calculating the induced drag force due to moving fluid medium
using the drag force equation described in Section 4.1.

In the subsequent round of experiments, we gradually increased the speed of the
motorized stage to increase the drag force until the trap was no longer able to hold the
particle and recorded the respective Az. The trapping force is plotted with respective Ax
in X-axis. The slope of the plot gives the stiffness of the laser trap K; for a particular
laser power. From the plot in Figure 4, the trap stiffness K for our operating laser power
of 5.3 mW is calculated as 0.3 pN/ pm and z is determined to be 1 pum since beyond
this point, the trap cannot stably hold the particle.
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5 Local Feedback Planner

In this section, we present a local feedback policy for indirect pushing using the bead
formation. The local feedback planner determines a suitable action (i.e., trap motion) to
indirectly push the cell towards a desired goal location for any given ensemble state.

5.1 Feedback Policy Algorithm

The feedback policy determines the desired velocity for the trap that moves the effector
bead to push the intermediate bead that in turn pushes the cell towards the goal location
for any given ensemble state. The main challenges encountered in finding a suitable
feedback policy are:

(i.) the contacts between beads and cells do not exist at all times since the contacts
may break at any time due to the Brownian motion and the dynamic interaction
between the fluid and particles, which leads to nonlinear pushing dynamics, and

(ii.) the measurement uncertainties may lead to an imperfect information about the
ensemble state and the existing contacts.

To handle the above described challenges, the feedback policy should be robust to
possible instabilities in contacts among the particles. It also should be able to handle the
uncertainty in feature recognition of the image processing algorithm. We have developed
a feedback policy consisting of three maneuvers to ensure robustness, namely, (1) push,
(2) align, and (3) backup (as shown in Figure 5).

The push maneuver is activated when the effector and intermediate beads, the cell,
and the goal are collinear. This causes the trap T} to move the effector bead, which in
turn pushes the intermediate bead so that the cell can move towards the goal. Particles
may get misaligned due to the dynamics and Brownian motion. As long as the angle
between cf’jc and d’fQ is less than a user-specified threshold 6, (see Figure 5b), the effector
bead, the intermediate bead, and the cell are considered to be aligned. In other words,
alignment is detected when cos‘l(@’fg, d’;c)) < 6y or (czlf,g, d§C> > cos(0y) = (1. As soon
as the particles are aligned, the push maneuver is invoked.

One of the phenomena, that we observed when the alignment occurs is that of binding
(Burns et al., 1989; Kardsek et al., 2008). If the effector bead and the intermediate bead
come too close to each other, they get binded partially due to optical force (known as
optical binding) and also due to fluid and particle surface interaction. This leads to an
undesirable situation in which when the effector bead rotates to align, the intermediate
bead performs the same motion due to temporary binding with the effector bead. We
solve the above problem by using a backup maneuver. Before applying the align maneuver,
the feedback planner determines the distance between the effector and the intermediate
bead. If it is lesser than a threshold 5 then the backup maneuver is invoked. According
to the backup maneuver, the trap is moved in the opposite direction to d; o, which leads
to breaking the temporary mechanical bond between the effector and the intermediate
bead in the bead formation.

The align maneuver is triggered when a misalignment is detected (i.e., <ci’f72, d’;c) <
f1). During the execution of the align maneuver, the trap 7} moves along a circular arc
(of the radius f33) until the alignment occurs. When the inner product <a?’1972, 6212‘“0) becomes
smaller than [;, a waypoint is created at a distance of 3, from the center of P, along
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with the cell C' and goal z,4. In
one time step the bead moves
rpfs distance along a circular
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Figure 5: The maneuvers utilized by the feedback policy (P, and P; are the effector bead
and intermediate bead of the bead formation, respectively, and C' is the cell).

the normal of Cizc. The trap 77 moves along the normal so that P, is pushed by P; for

_ .k
alignment. Let % = ”z‘%i,;;” be the unit vector along the direction between the cell and
g C

the goal location. Once the angle between dlc' and the direction to the goal 4" is smaller
than a given threshold (4, a movement along a circular arc of radius S5 is executed,
otherwise the push maneuver is invoked. Depending upon the relative placement of the
goal with respect to the other particles, the effector bead either needs to move clockwise
or counterclockwise to place it suitably behind the intermediate bead (see Figure 6). The
effector bead can then push the intermediate bead along an arc so that the intermediate
bead, cell, and goal are all aligned. To determine the sense of movement of the effector
bead, first « is determined as shown in Figure 6. After this, § is determined according to
Algorithm 1. The term [ is an intermediate quantity and hence is not shown graphically.
The values of the threshold parameters 31, 5, .., 85 depend upon the turning angle of the
intended path of the cell. The above procedure is described in the Algorithm 1.

5.2 Parameter Optimization

One of the issues related to the use of the feedback policy presented in Algorithm 1 is
the tuning of the parameters 8 = [y, 52, 03, 84, B5]. For various turning angles and noise
levels to which an ensemble is subject to, the choice of the parameters 3; varies. Manual
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Algorithm 1 LocalFeedbackPolicy

1:

10:
11:

12:

13:
14:
15:

16:
17:
18:
19:
20:
21:

If P, P, and C are all aligned along the direction to the goal, i.e., <ci’f2,d’2“c> < B
and (&’;C,ak> < By, then y* = PUSH(S*) and go to step 3, otherwise go to step 2.

If (0¥, dy) < By and ||z% — 25| < By then y* = BACKUP(S¥) else if (0%, dyc) < By
then y* = ALIGN(S*). Here, ¢ > 0 is a user defined small positive real number

representing numerical tolerance.

ko yf-af

Compute unit vector u} = ToF =2t
1

Return vf = smamﬂ’f.

procedure PUsH(S*, 3)
Return y* = 2%

end procedure

procedure ALIGN(S* 3)

Compute a = (4% x da), [0,0,1]7).

Compute a normal vector 7 ¢ to (fzc in the favorable direction so that the in-
termediate bead and the cell can be aligned to the goal direction using ns,c =
[ad27c(2), —Ozdlc(l), O]T

If (cZz,c, CZLQ> < f33 then return y* = x’f + Bangc else go to step 14.

Compute v = ((dy5 X fi2.¢), [0,0,1]T)

Compute rotational angular increment Af = 0.05ay and rotation matrix

cos(Af) —sin(AF) 0
Rao = | sin(A0)  cos(Af) 0
0 0 1

Return y* = 25 — BsrpRagdy o
end procedure

procedure BACKUP(S*, 3)
Return y* = 25 — B5d, .
end procedure
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Figure 6: Motion control of the effector bead in response to the current state of the
intermediate bead, cell, and the goal.

tuning of the parameters is a time consuming process and can be made more efficient by
using an optimization technique. We present an automated parameter tuning approach
based on the developed simulation and genetic algorithm (GA) based optimization.

To formulate the parameter tuning as an optimization problem, we chose the parame-
ters f3; as design variables. The fitness function depends upon two factors, namely, (1) the
time required for transporting an ensemble, and (2) the path following accuracy. To eval-
uate candidate sets of parameters, we generated multiple scenarios of paths with varying
turning angles ranging from —90° to 90° with the increments of 30° and the total path
length of 40 yum. We chose the maximum trap speed to be 3 ym s~!. The cell and bead
diameter is taken as 5 pm. We simulated 5 different levels of sensor noise with fixed
seeding for each scenario and then applied them in the simulation. We define the fitness
function as

5
F(Bysg) = " wit; + woe; (8)
j=1
where t; is the time required for transporting the cell and e; is the deviation from the
intended path computed using Algorithm 1, w; and w, are the weights, the index j is
used for generating a seed for fixed pseudo-random noise generation, and sy is the path
with the given turning angle 6.

We utilized Matlab?™ genetic algorithm toolbox for optimizing the parameters for
each turning angle. We chose a population size of 200 and an uniform mutation with
the probability of 0.03. We seeded the genetic algorithm with previously found solutions
and successively improved the solutions until no further improvements were observed.
We executed tests for 1000 different random measurement noise samples for each turning
angle, in order to test the robustness of the planner with the optimized parameter values.
We simulated the noise based on the covariance matrix determined in Section 4.2. The
seeds for the random noise for each of 1000 cases are kept fixed for each test case, namely
the turning angles. Variation of transportation time with respect to different turning
angles is shown in Figure 7. The transportation time depends upon turning angle. In
case of a large or steep turning angle, the ensemble needs to spend more time aligning

16



+ +

+

Transport time (s)

AT P e d e

-120 -90 -60 -30 0 30 60 90 120
Turning angle (degrees)

Figure 7: Optimized transport time of the ensemble under various turning angles and
1000 random measurement noise samples.
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Figure 8: An overview of the experimental system.

with the goal, thereby increases the transportation time (see Figure 7).

For a large number of random measurement noises, the transport time does not deviate
significantly (see Figure 7). This is an empirical evidence that optimized parameters are
robust to the sensor noise.

6 Experimental Results

In this section, we present the details of the experimental setup we used for evaluation of
the feedback planning approach discussed in this paper (see Figure 8). We used BioRyx
200 (Arryx, Inc., Chicago, IL) holographic laser tweezer. BioRyx 200 consists of a Nikon
Eclipse TE 200 inverted microscope, a Spectra-Physics Nd-YAG laser (emitting green
light of wavelength 532 nm), a spatial light modulator (SLM), and proprietary phase
mask generation software running on a desktop PC. Nikon Plan Apo 60x/1.4 NA, DIC
H oil-immersion objective is used. The maximum rate at which traps can be set is the
update rate of the SLM, which is 15 Hz, and the minimum step size is 150 nm. The
feedback control is achieved using a second PC equipped with a uEye camera (IDS, Inc.,
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Cambridge, MA) for imaging the workspace and running the software for executing the
planning algorithm. We use 5 um diameter silica beads (with the density of 2000 kg/m?
and the refractive index of 1.46), purchased from Bangs Laboratories, Inc., Fishers, IN) as
the actuated as well as intermediate beads. We use yeast cells as sample for transporting
using indirect pushing. The cells are approximately spherical, and their diameter ranges
from 4 to 7 pm.

Figure 9 shows an indirect transport of a yeast cell by the proposed bead formation
(a video of this experimental result can be found in Extension 1). The formation consists
of an effector bead actuated by an optical trap, and an intermediate bead that is used to
keep the laser trap far away from the cell. The intermediate bead is not trapped by the
laser. The optical trap is controlled using the feedback planner described in this paper.
The planner moves the effector bead to push the intermediate bead in the formation and
thereby indirectly pushes the cell. This allows to transport the cell towards the desired
goal location through the transfer of momentum. The goal location z, is initially set to the
first waypoint the cell needs to be transported to. Once the cell reaches the waypoint, z,
is set to the next waypoint. The workspace and the goal location are shown in Figure 9(a)
with an ensemble containing the effector bead, intermediate bead, and a yeast cell that
need to be transported. The feedback planner selects appropriate maneuvers as described
in Algorithm 1 depending upon the state of the ensemble. The state of the ensemble
is determined by an automated image processing algorithm based on Hough transform
(Duda and Hart, 1972).

Often, the alignment of the ensemble is broken due to the Brownian motion and
dynamical interaction between fluid and the beads (see Figure 9(c) and 9(i)). The planner
uses the align maneuver to rotate the trap around the intermediate bead in order to
position the effector bead on an axis connecting the cell, the intermediate bead, and the
goal z, (see Figure 9(b)).

Due to the effect of Van-der Waals forces and trapping forces (known as optical binding
(Burns et al., 1989; Karések et al., 2008)), the intermediate bead sometimes gets stuck
to the effector bead in the bead formation (see Figure 10). The beads in the figure have
a diameter of 5 pum. The bead on the left is trapped optically while the bead on the
right is freely diffusing. The trapped bead is gradually moved towards the freely diffusing
bead and eventually starts pushing it. As the trapped bead begins pushing the freely
diffusing bead, the distance between them as determined by the image processing module
is 4.6 pm. Ideally, in case of a perfectly planar motion, the distance between the beads
during pushing should not be less than 5 pm (i.e., the sum of the radius of the pushing and
pushed particles). However, in this case, the beads move in slightly different planes and
thus the distance between them is further reduced. This reduced distance and Van-der
Waals and optical forces cause the bead to further move in different planes. This effect can
be seen in Figure 10c, where the image processing module measures the distance between
the beads to be 3.3 ym. This eventually leads to a planning failure as the boundaries of
the beads merge, which leads to difficulties in automatically recognizing the individual
beads.

The planner developed in this paper can automatically predict this phenomenon by
continuously checking the distance between the intermediate and effector beads. The
planner utilizes the backup maneuver to detach the effector bead from the intermediate
bead if the distance between them drops below a user-specified threshold in order to
prevent the sticking phenomena (see Figure 9(d)).
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Figure 9: The experimental result of indirect pushing based transport of a target cell
through multiple waypoints by the proposed bead formation. The formation is composed
of an effector bead actuated by an optical trap and an intermediate bead used to protect
the cell from a high intensity laser beam: (a) the initial state of the ensemble, (b) execution
of the align maneuver to align the intermediate bead along the direction to the goal,
(c) alignment of the ensemble is broken due to the dynamic fluid-particle interaction
and Brownian motion, (d) execution of the backup maneuver to prevent sticking of the
effector and intermediate beads due to Van-der Waals forces, (e) execution of the align
maneuver to rotate the trap around the intermediate bead, (f) execution of the align
maneuver to go behind the intermediate bead in order to align it towards the goal, (g)
execution of the align maneuver to place the effector bead along the direction to the goal,
(h) execution of the push maneuver to move the cell to reach the goal, (i) the ensemble
reaches the first waypoint and the desired goal location is set to the next waypoint, (j)
execution of the align maneuver to go behind the intermediate bead to re-align it towards
the goal direction, (k) execution of the align maneuver to place the effector bead along
the direction to the goal, (1) the alignment of the ensemble is broken due to the dynamic
fluid-particle interaction and Brownian motion, (m) execution of the align maneuver to
go behind the intermediate bead to align it towards the goal, (n) execution of the align
maneuver to place the effector bead along the direction to the goal, and (o) the ensemble
reaches the second waypoint with the use of the push maneuver.
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(a) The distance between the
centers of the particles is 7 um
as detected by the image pro-
cessing module and pushing
has not yet started.

(b) The distance between the
centers of the particles is
4.6 pum as detected by the
image processing module and
pushing has just started.

(¢) The distance between the
centers of the particles is
3.3 um as detected by the im-
age processing module and the
particle boundary has disap-

pered, making the detection of
the centers of the beads to fail.

Figure 10: The particle on the left is optically trapped and pushes the freely diffusing
particle on the right. The diameter of each particle is 5 pm. Due to the sticking phe-
nomenon, the particles move in slightly different planes and the distance between them is
observed to be 4.6 um at the beginning of the push maneuver. As the pushing continues,
the particles seem to get stuck to each other due to Van-der Waals and optical forces.
These forces make the particles further slide into different planes, making the boundary
between the two particles disappear.

The planner continues executing the maneuvers as soon as the effector bead moves to
a safe distance from the intermediate bead (see Figures 9(e)— 9(g)) and until the ensemble
gets aligned towards the goal. Finally, the planner executes the push maneuver to push
the cell towards the goal (see Figure 9(h)).

Once the cell moves sufficiently close to the waypoint, the planner is assigned a new
goal z, represented as the next waypoint (see Figure 9(i)). The planner then continues
executing suitable maneuvers until the cell reaches the final goal position (see Figures 9(j)—

9(0)).

7 Conclusions

This paper presents a computational approach for performing an automated, image-
guided, indirect micromanipulation of cells using a two-bead formation. The bead forma-
tion is composed of an optically actuated effector bead and a freely diffusing intermediate
bead. The key components of the developed computational framework are the dynamics
simulation of the indirect pushing, method for identification of the dynamics parameters
and measurement noise, feedback planner that can handle sensor uncertainty in a robust
manner, and optimization-based automated parameter tuning. We have experimentally
demonstrated the application of the developed planning approach in a cell transport
experiment using indirect pushing. The developed system can be utilized in biological
experiments for studying cell migration, which is a fundamental process in metastasis
and embryogenesis.

In the future, our aim is to carry out additional experiments under different operating
conditions to further validate the robustness and flexibility of the developed approach. In
particular, we will vary these conditions in terms of sensing uncertainties, fluid viscosi-

20



ties, laser power, and trap speeds. We would also like to generalize the feedback policy
to deal with multiple effector and intermediate beads. This will allow us to automati-
cally manipulate cells with more complex shapes. Irregular shaped cells as Dictyostelium
Discoideum require a higher number of intermediate and effector beads for automated
transport, which can be handled using a generalized framework consisting of several in-
termediate beads. We would also like to incorporate a global path planning algorithm in
order to further optimize the motion of the ensemble. Finally, the heuristic cost function
for the global planner can be precomputed by determining the transport time using the
developed micromanipulation and simulation framework.
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Appendix A Index to Multimedia Extensions

Table of Multimedia Extensions

Extension = Media Type Description
1 Video Automated Indirect Pushing of a
Yeast Cell
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